Estado del Arte en Neurotecnologías para la Asistencia y la Rehabilitación en España: Tecnologías Fundamentales

Neurotechnologies are those technologies aimed to study the nervous system, or to improve its function. These technologies expand the range of treatments for rehabilitating damaged functions and provide new healthcare solutions for the functions that have been lost. This paper reviews the rehabilitation and assistance neurotechnologies, mainly for motor disorders, it introduces a taxonomy that facilitates the systematic review, and it shows recent progresses made in Spain in the investigation, development, and application of their fundamental technologies.

[1]  Jose Gonzalez-Vargas,et al.  Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation , 2016, European journal of translational myology.

[2]  J. C. Fraile,et al.  Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores , 2011 .

[3]  Mahmoud Taleb Beidokhti,et al.  Advances in Intelligent Systems and Computing , 2016 .

[4]  Ricardo Ron Angevin,et al.  Evaluación de un protocolo de entrenamiento en una interfaz cerebro-computadora: propuesta de tareas mentales. , 2008 .

[5]  Javier Gomez-Pilar,et al.  Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces , 2015, Neurocomputing.

[6]  Andrés Úbeda,et al.  Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals , 2015, PloS one.

[7]  D. Abásolo,et al.  Brain oscillatory complexity across the life span , 2012, Clinical Neurophysiology.

[8]  J. Moreno,et al.  Muscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity , 2016, Front. Hum. Neurosci..

[9]  Luis Montesano,et al.  Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients , 2017, IEEE Transactions on Biomedical Engineering.

[10]  Francisco Velasco-Álvarez,et al.  A two-class brain computer interface to freely navigate through virtual worlds / Ein Zwei-Klassen-Brain-Computer-Interface zur freien Navigation durch virtuelle Welten , 2009, Biomedizinische Technik. Biomedical engineering.

[11]  J. Pons,et al.  Maintenance of cutaneomuscular neuronal excitability after leg-cycling predicts lower limb muscle strength after incomplete spinal cord injury , 2016, Clinical Neurophysiology.

[12]  Miguel Angel Mañanas,et al.  Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context , 2016, Sensors.

[13]  Jose L Pons,et al.  21.13 Simulation of knee function during gait with anorthosis by means of two springs of different stifnesses , 2005 .

[14]  Andrzej Cichocki,et al.  EEG windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts , 2008, Physiological measurement.

[15]  Álvaro Fernández-Rodríguez,et al.  Wheelchair navigation with an audio-cued, two-class motor imagery-based brain-computer interface system , 2015, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER).

[16]  Roberto Hornero,et al.  Cross-Approximate Entropy parallel computation on GPUs for biomedical signal analysis. Application to MEG recordings , 2013, Comput. Methods Programs Biomed..

[17]  S. Romero,et al.  Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation , 2008, Annals of Biomedical Engineering.

[18]  R Ron-Angevin,et al.  [Training protocol evaluation of a brain-computer interface: mental tasks proposal]. , 2008, Revista de neurologia.

[19]  Bram Vanderborght,et al.  Human-like compliant locomotion: state of the art of robotic implementations , 2016, Bioinspiration & biomimetics.

[20]  José Luis Pons Rovira,et al.  Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness , 2007, Medical & Biological Engineering & Computing.

[21]  R. Hornero,et al.  Spectral changes in spontaneous MEG activity across the lifespan , 2013, Journal of neural engineering.

[22]  Andrés Úbeda,et al.  Control of a 2 DoF robot using a Brain-Machine Interface , 2014, Comput. Methods Programs Biomed..

[23]  J. Barberá,et al.  Safety and Efficacy of Intrathecal Baclofen Infusion by Implantable Pump for the Treatment of Severe Spinal Spasticity: A Spanish Multicenter Study , 2000, Neuromodulation : journal of the International Neuromodulation Society.

[24]  Eduardo Rocon de Lima,et al.  Design and implementation of an inertial measurement unit for control of artificial limbs: Application on leg orthoses , 2006 .

[25]  Roberto Hornero,et al.  Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients , 2011, Annals of Biomedical Engineering.

[26]  Jose L Pons,et al.  Rehabilitation Exoskeletal Robotics , 2010, IEEE Engineering in Medicine and Biology Magazine.

[27]  Ricardo Ron-Angevin,et al.  Brain–computer interface: Changes in performance using virtual reality techniques , 2009, Neuroscience Letters.

[28]  José Luis Pons Rovira,et al.  Predictive classification of self-paced upper-limb analytical movements with EEG , 2015, Medical & Biological Engineering & Computing.

[29]  Á. Pascual-Leone,et al.  Reduction of Spasticity With Repetitive Transcranial Magnetic Stimulation in Patients With Spinal Cord Injury , 2010, Neurorehabilitation and neural repair.

[30]  E. Opisso,et al.  Subject‐controlled stimulation of dorsal genital nerve to treat neurogenic detrusor overactivity at home , 2013, Neurourology and urodynamics.

[31]  Á. Pascual-Leone,et al.  Language improvements after TMS plus modified CILT: Pilot, open-protocol study with two, chronic nonfluent aphasia cases. , 2014, Restorative neurology and neuroscience.

[32]  Á. Pascual-Leone,et al.  Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations , 2014, Neural regeneration research.

[33]  E. Opisso,et al.  Urethral sphincter EMG-controlled dorsal penile/clitoral nerve stimulation to treat neurogenic detrusor overactivity , 2011, Journal of neural engineering.

[34]  J. Pons,et al.  A neuroprosthesis for tremor management through the control of muscle co-contraction , 2013, Journal of NeuroEngineering and Rehabilitation.

[35]  Andrés Úbeda,et al.  Decoding the Attentional Demands of Gait through EEG Gamma Band Features , 2016, PloS one.

[36]  Rebeca Corralejo,et al.  Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[37]  Francisco del Pozo,et al.  Signal-to-noise ratio of the MEG signal after preprocessing , 2014, Journal of Neuroscience Methods.

[38]  M. A. Lopez-Gordo,et al.  Customized stimulation enhances performance of independent binary SSVEP-BCIs , 2011, Clinical Neurophysiology.

[39]  The “Barcelona” technique , 1993, Neurourology and urodynamics.

[40]  Roberto Hornero,et al.  Association between electroencephalographic modulation, psychotic‐like experiences and cognitive performance in the general population , 2016, Psychiatry and clinical neurosciences.

[41]  Andrés Úbeda,et al.  EEG-Based Detection of Starting and Stopping During Gait Cycle , 2016, Int. J. Neural Syst..

[42]  J. Riba,et al.  Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam , 2011, Psychopharmacology.

[43]  Enrique Hortal,et al.  Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions , 2015, Journal of NeuroEngineering and Rehabilitation.

[44]  Andrés Úbeda,et al.  SVM-based Brain-Machine Interface for controlling a robot arm through four mental tasks , 2015, Neurocomputing.

[45]  Francisco J. Pelayo,et al.  An auditory Brain-Computer Interface with Accuracy Prediction , 2012, Int. J. Neural Syst..

[46]  D. Farina,et al.  Online Tremor Suppression Using Electromyography and Low-Level Electrical Stimulation , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[47]  S. Micheloyannis,et al.  Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. , 2016, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[48]  Carlos Rodriguez Guerrero,et al.  Using "human state aware" robots to enhance physical human-robot interaction in a cooperative scenario , 2013, Comput. Methods Programs Biomed..

[49]  R Ron-Angevin,et al.  Initial test of a T9-like P300-based speller by an ALS patient , 2015, Journal of neural engineering.

[50]  Jose L Pons,et al.  Filtrado Adaptativo de Componentes Involuntarias en Marcha Asistida por Andador para Detección de Intenciones , 2011 .

[51]  E. Rocon,et al.  Design and Validation of a Rehabilitation Robotic Exoskeleton for Tremor Assessment and Suppression , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[52]  Francisco J. Pelayo,et al.  Stress Assessment by Prefrontal Relative Gamma , 2016, Front. Comput. Neurosci..

[53]  Joan Vidal,et al.  Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury , 2016, Experimental Brain Research.

[54]  Francisco J. Pelayo,et al.  Trends in EEG-BCI for daily-life: Requirements for artifact removal , 2017, Biomed. Signal Process. Control..

[55]  Juan Carlos Fraile Marinero,et al.  Control of the E2REBOT Platform for Upper Limb Rehabilitation in Patients with Neuromotor Impairment , 2015, ROBOT.

[56]  Á. Pascual-Leone,et al.  Task-dependent Activity and Connectivity Predict Episodic Memory Network-based Responses to Brain Stimulation in Healthy Aging , 2014, Brain Stimulation.

[57]  Á Fernández-Rodríguez,et al.  Review of real brain-controlled wheelchairs , 2016, Journal of neural engineering.

[58]  Pablo Padilla,et al.  A proposal for bio-synchronized transmission of EEG/ERP data , 2016, EURASIP J. Wirel. Commun. Netw..

[59]  J. Benito,et al.  Cost-Effectiveness Model Results of Intrathecal Baclofen Therapy Compared to Conventional Medical Management in Patients with Non-Focal Disabling Spasticity Who are Resistant or Intolerant to Oral Therapy at the Institut Guttmann. , 2014, Value in Health.

[60]  José Luis Pons Rovira,et al.  A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity , 2014, IEEE Transactions on Biomedical Engineering.

[61]  José Luis Pons Rovira,et al.  Hybrid therapy of walking with Kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study , 2015, Robotics Auton. Syst..

[62]  Á. Pascual-Leone,et al.  Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. , 2012, Topics in spinal cord injury rehabilitation.

[63]  S. Sanei,et al.  Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms , 2011, Physiological measurement.

[64]  Roberto Hornero,et al.  Spectral Regression Kernel Discriminant Analysis for P300 Speller Based Brain-Computer Interfaces , 2017 .

[65]  Á. Pascual-Leone,et al.  Effect of Transcranial Direct Current Stimulation on Neurorehabilitation of Task-Specific Dystonia: A Double-Blind, Randomized Clinical Trial. , 2015, Medical problems of performing artists.

[66]  R. Bajo,et al.  MEG spectral analysis in subtypes of mild cognitive impairment , 2014, AGE.

[67]  Leandro da Silva Sauer,et al.  Variables psicológicas en el control de interfaces cerebro-computadora , 2011 .

[68]  François-Benoît Vialatte,et al.  Towards Semi-Automatic Artifact Rejection for the Improvement of Alzheimer’s Disease Screening from EEG Signals , 2015, Sensors.

[69]  Loredana Zollo,et al.  Dynamic Adaptive System for Robot-Assisted Motion Rehabilitation , 2016, IEEE Systems Journal.

[70]  Miguel A Mañanas,et al.  Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity. , 2016, Journal of neural engineering.

[71]  Eduardo Rocon,et al.  Advances in selective activation of muscles for non-invasive motor neuroprostheses , 2016, Journal of NeuroEngineering and Rehabilitation.

[72]  Jose L. Contreras-Vidal,et al.  Robotic Assistance of Human Motion Using Active-Backdrivability on a Geared Electromagnetic Motor , 2016 .

[73]  Francisco Velasco-Álvarez,et al.  Audio-cued motor imagery-based brain-computer interface: Navigation through virtual and real environments , 2013, Neurocomputing.

[74]  J. Moreno,et al.  The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study , 2015, Journal of NeuroEngineering and Rehabilitation.

[75]  José Luis Pons Rovira,et al.  An adaptive control strategy for postural stability using a wearable robot , 2015, Robotics Auton. Syst..

[76]  Ricardo Ron-Angevin,et al.  Estado del Arte en Neurotecnologías para la Asistencia y la Rehabilitación en España: Tecnologías Auxiliares, Trasferencia Tecnológica y Aplicación Clínica , 2017 .

[77]  C. Rodriguez Guerrero,et al.  Bio cooperative robotic platform for motor function recovery of the upper limb after stroke , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[78]  Dario Farina,et al.  Editorial: Biosignal processing and computational methods to enhance sensory motor neuroprosthetics , 2015, Front. Neurosci..

[79]  J. Duñabeitia,et al.  Developmental changes associated with cross-language similarity in bilingual children , 2016 .

[80]  José Luis Pons Rovira,et al.  Inertial Sensor Error Reduction through Calibration and Sensor Fusion , 2016, Sensors.

[81]  J L Pons,et al.  Modular control of gait after incomplete spinal cord injury: differences between sides , 2016, Spinal Cord.

[82]  J. M. Azorín,et al.  Analyzing EEG signals to detect unexpected obstacles during walking , 2015, Journal of NeuroEngineering and Rehabilitation.

[83]  J. Pons,et al.  Combining Dopaminergic Facilitation with Robot-Assisted Upper Limb Therapy in Stroke Survivors , 2016, American journal of physical medicine & rehabilitation.

[84]  M. Bajo,et al.  Emergent Bilingualism and Working Memory Development in School Aged Children. , 2016 .

[85]  Visual Detection of High Frequency Oscillations in MEG , 2017 .

[86]  Jose L Pons,et al.  A review of fMRI as a tool for enhancing EEG-based brain-machine interfaces , 2012, HRI 2012.

[87]  Eduardo Fernández,et al.  Asynchronous EEG/ERP Acquisition for EEG Teleservices , 2015, IWINAC.

[88]  Jordi Costa-Faidella,et al.  Early change detection in humans as revealed by auditory brainstem and middle‐latency evoked potentials , 2010, The European journal of neuroscience.

[89]  R. Hornero,et al.  Variation at NRG1 genotype related to modulation of small-world properties of the functional cortical network , 2017, European Archives of Psychiatry and Clinical Neuroscience.

[90]  Francisco J. Pelayo,et al.  Detection of attention in multi-talker scenarios: A fuzzy approach , 2016, Expert Syst. Appl..

[91]  N. Vilardell,et al.  Neurorehabilitation strategies for poststroke oropharyngeal dysphagia: from compensation to the recovery of swallowing function , 2016, Annals of the New York Academy of Sciences.

[92]  Javier Gomez-Pilar,et al.  An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People , 2017, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[93]  Á. Pascual-Leone,et al.  Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. , 2010, Brain : a journal of neurology.

[94]  G. Roeste,et al.  A clinical study of intrathecal baclofen using a programmable pump for intractable spasticity. , 2005, Archives of physical medicine and rehabilitation.

[95]  Eduardo Rocon,et al.  Automatic real-time monitoring and assessment of tremor parameters in the upper limb from orientation data , 2014, Front. Neurosci..

[96]  Rebeca Corralejo,et al.  A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people , 2014, Medical & Biological Engineering & Computing.

[97]  Francisco J. Pelayo,et al.  Asynchronous Detection of Trials Onset from Raw EEG Signals , 2016, Int. J. Neural Syst..

[98]  Rubén Alonso,et al.  E2Rebot: A robotic platform for upper limb rehabilitation in patients with neuromotor disability , 2016 .

[99]  José Luis Pons Rovira,et al.  Novel kinematic indices for quantifying upper limb ability and dexterity after cervical spinal cord injury , 2017, Medical & Biological Engineering & Computing.

[100]  Dario Farina,et al.  Biosignal Processing and Computational Methods to Enhance Sensory Motor Neuroprosthetics , 2016 .

[101]  Jose L Pons,et al.  Human-robot interfaces in exoskeletons for gait training after stroke: State of the art and challenges , 2012, HRI 2012.

[102]  Francisco Velasco-Álvarez,et al.  Free Virtual Navigation Using Motor Imagery Through an Asynchronous BrainComputer Interface , 2010, PRESENCE: Teleoperators and Virtual Environments.

[103]  J. Benito-Penalva,et al.  Cost-effectiveness of Intrathecal Baclofen Therapy in severe refractory non-focal disabling spasticity: a Spanish hospital perspective , 2017, Expert review of pharmacoeconomics & outcomes research.

[104]  Ricardo Ron-Angevin,et al.  Auditory Brain-Computer Interfaces for Complete Locked-In Patients , 2011, IWANN.

[105]  Andrés Úbeda,et al.  Visual evoked potential-based brain-machine interface applications to assist disabled people , 2012, Expert Syst. Appl..

[106]  Eduardo Rocon,et al.  Wearable inertial mouse for children with physical and cognitive impairments , 2010 .

[107]  Ricardo Ron-Angevin,et al.  Concentration on performance with P300-based BCI systems: a matter of interface features. , 2016, Applied ergonomics.

[108]  Miguel A Mañanas,et al.  Influence of ocular filtering in EEG data on the assessment of drug‐induced effects on the brain , 2009, Human brain mapping.