Highly reversible potassium-ion intercalation in tungsten disulfide† †Dedicated to Prof. Jin-Shun Huang on the occasion of his 80th birthday. ‡ ‡Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc04350g

0.62 K+ readily (de)intercalates in WS2 with well-defined voltage plateaus, an intrinsically safe operation potential, and ultrahigh reversibility.

[1]  Wei Wang,et al.  Metallic Graphene‐Like VSe2 Ultrathin Nanosheets: Superior Potassium‐Ion Storage and Their Working Mechanism , 2018, Advanced materials.

[2]  YuHuang Wang,et al.  Concentrated electrolytes stabilize bismuth–potassium batteries , 2018, Chemical science.

[3]  Shaojun Guo,et al.  Pistachio‐Shuck‐Like MoSe2/C Core/Shell Nanostructures for High‐Performance Potassium‐Ion Storage , 2018, Advanced materials.

[4]  Tian Zheng,et al.  Boosting the Potassium Storage Performance of Alloy‐Based Anode Materials via Electrolyte Salt Chemistry , 2018 .

[5]  Yuesheng Wang,et al.  TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte , 2018 .

[6]  Jun Chen,et al.  A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. , 2018, Angewandte Chemie.

[7]  Kai Xi,et al.  Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries , 2017, Advances in Materials.

[8]  G. Ceder,et al.  K‐Ion Batteries Based on a P2‐Type K0.6CoO2 Cathode , 2017 .

[9]  Jinghua Wu,et al.  Hierarchical VS2 Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions , 2017, Advanced materials.

[10]  Bingbing Tian,et al.  Phase Transformations in TiS2 during K Intercalation , 2017 .

[11]  M. Salanne,et al.  Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. , 2017, Nature materials.

[12]  Yiying Wu,et al.  Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. , 2017, Journal of the American Chemical Society.

[13]  D. Su,et al.  Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries , 2017 .

[14]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[15]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[16]  C. Li,et al.  Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries , 2017 .

[17]  Xiaodi Ren,et al.  MoS2 as a long-life host material for potassium ion intercalation , 2017, Nano Research.

[18]  Jun Chen,et al.  High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes , 2017 .

[19]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[20]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[21]  Meng Huang,et al.  Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. , 2017, Nano letters.

[22]  Chunsheng Wang,et al.  Electrochemical Intercalation of Potassium into Graphite , 2016 .

[23]  Han Yang,et al.  Ice Templated Free‐Standing Hierarchically WS2/CNT‐rGO Aerogel for High‐Performance Rechargeable Lithium and Sodium Ion Batteries , 2016 .

[24]  Jin Han,et al.  Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. , 2016, Chemical communications.

[25]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[26]  Zhong Jin,et al.  Emerging non-lithium ion batteries , 2016 .

[27]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[28]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[29]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[30]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[31]  Jaephil Cho,et al.  Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges , 2014 .

[32]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[33]  C. Rao,et al.  Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries , 2013 .

[34]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[35]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[36]  Shin Fujitani,et al.  Study of LiFePO4 by Cyclic Voltammetry , 2007 .

[37]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[38]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[39]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[40]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[41]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .