Interspecies gene exchange in bacteria: The role of SOS and mismatch repair systems in evolution of species

Analysis of interspecies matings between S. typhimurium and E. coli indicates that the genetic barrier that separates these (and perhaps many other) related species is primarily recombinational. The structural component of this barrier is genomic sequence divergence. The mismatch repair enzymes act as potent inhibitors of interspecies recombination, whereas the SOS system acts as an inducible positive regulator. Interspecies mating triggers a RecBC-dependent SOS response in female bacteria that increases recombination mainly through overproduction of the RecA protein. Mismatch repair acts to reduce the mutation rate and recombination between similar sequences, whereas SOS acts to increase both. These opposing activities allow mismatch repair and SOS systems to determine both the rate of accumulation of sequence divergence and the extent of genetic isolation, which are the key components of the speciation process.

[1]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[2]  R. Service Stalking the start of colon cancer. , 1994, Science.

[3]  A. Lehner,et al.  Mapping and spacer identification of rRNA operons of Salmonella typhimurium , 1984, Journal of bacteriology.

[4]  E. Siegel,et al.  Mutator mutations in Escherichia coli induced by the insertion of phage mu and the transposable resistance elements Tn5 and Tn10. , 1982, Mutation research.

[5]  Jeffrey W. Roberts,et al.  Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. , 1990, Journal of molecular biology.

[6]  A. Lehner,et al.  Merodiploidy in Escherichia coli-Salmonella typhimurium crosses: the role of unequal recombination between ribosomal RNA genes. , 1985, Genetics.

[7]  A. Fornace Mammalian genes induced by radiation; activation of genes associated with growth control. , 1992, Annual review of genetics.

[8]  M. Radman,et al.  Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis , 1974 .

[9]  R. G. Lloyd,et al.  Hyper-recombination in Escherichia coli K-12 mutants constitutive for protein X synthesis , 1978, Journal of bacteriology.

[10]  M. Radman,et al.  Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Henry Huang,et al.  Homologous recombination in Escherichia coli: dependence on substrate length and homology. , 1986, Genetics.

[12]  D. Mount,et al.  Dominant Mutations (lex) in Escherichia coli K-12 Which Affect Radiation Sensitivity and Frequency of Ultraviolet Light-Induced Mutations , 1972, Journal of bacteriology.

[13]  M. Radman,et al.  Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. , 1991, Genetics.

[14]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.

[15]  T. Whittam,et al.  Recombination of Salmonella phase 1 flagellin genes generates new serovars , 1990, Journal of bacteriology.

[16]  J. Heinemann Genetics of gene transfer between species. , 1991, Trends in genetics : TIG.

[17]  E. Mayr The Growth of Biological Thought: Diversity, Evolution, and Inheritance , 1983 .

[18]  B. Wilkins,et al.  Zygotic induction of plasmid ssb and psiB genes following conjugative transfer of Incl1 plasmid Collb‐P9 , 1992, Molecular microbiology.

[19]  M. Gross,et al.  Incidence of mutator strains in Escherichia coli and coliforms in nature. , 1981, Mutation research.

[20]  M. Oishi 12 – Induction of Recombination-Related Functions (SOS Functions) in Response to DNA Damage , 1988 .

[21]  R. Reenan,et al.  Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. , 1992, Genetics.

[22]  Gerald R. Smith Homologous recombination in E. coli: Multiple pathways for multiple reasons , 1989, Cell.

[23]  M. Lichten,et al.  Evidence for inclusion of regions of nonhomology in heteroduplex products of bacteriophage lambda recombination. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[24]  F. Lindberg,et al.  Horizontal gene transfer of the Escherichia coli pap and prs pili operons as a mechanism for the development of tissue‐specific adhesive properties , 1992, Molecular microbiology.

[25]  R. G. Lloyd,et al.  Mutation of recF, recJ, recO, recQ, or recR improves Hfr recombination in resolvase-deficient ruv recG strains of Escherichia coli , 1994, Journal of bacteriology.

[26]  S. Kowalczykowski,et al.  Biochemistry of homologous recombination in Escherichia coli. , 1994, Microbiological reviews.

[27]  S. Sedgwick,et al.  Polymorphisms in the umuDC region of Escherichia species , 1988, Journal of bacteriology.

[28]  K. Jyssum Observations on two types of genetic instability in Escherichia coli. , 2009, Acta pathologica et microbiologica Scandinavica.

[29]  L. Prakash Molecular and environmental aspects of mutagenesis , 1974 .

[30]  Z. Horii,et al.  Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. , 1973, Journal of molecular biology.

[31]  P Howard-Flanders,et al.  Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. , 1966, Genetics.

[32]  L. Chao,et al.  COMPETITION BETWEEN HIGH AND LOW MUTATING STRAINS OF ESCHERICHIA COLI , 1983, Evolution; international journal of organic evolution.

[33]  M. Roberts,et al.  The effect of DNA sequence divergence on sexual isolation in Bacillus. , 1993, Genetics.

[34]  Jeffrey W. Roberts,et al.  E. coli recA protein-directed cleavage of phage λ repressor requires polynucleotide , 1980, Nature.

[35]  S. Lovett,et al.  Genetic analysis of the recJ gene of Escherichia coli K-12 , 1984, Journal of bacteriology.

[36]  M. Radman IS THERE SOS INDUCTION IN MAMMALIAN CELLS? , 1980, Photochemistry and photobiology.

[37]  Wen-Hsiung Li,et al.  The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. , 1987, Molecular biology and evolution.

[38]  H. Echols,et al.  Duplication mutation as an SOS response in Escherichia coli: enhanced duplication formation by a constitutively activated RecA. , 1989, Genetics.

[39]  S. West The processing of recombination intermediates: Mechanistic insights from studies of bacterial proteins , 1994, Cell.

[40]  G. Walker Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. , 1984, Microbiological reviews.

[41]  M. Radman,et al.  SOS mutator effect in E. coli mutants deficient in mismatch correction. , 1984, The EMBO journal.

[42]  大木 操 Asymmetric transfer of DNA strands in bacterial conjugation , 1969 .

[43]  P. Kahn Isolation of high-frequency recombining strains from Escherichia coli containing the V colicinogenic factor. , 1968, Journal of Bacteriology.

[44]  S. Sommer,et al.  The appearance of the UmuD'C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis , 1993, Molecular microbiology.

[45]  R. G. Lloyd,et al.  Genetic analysis of conjugational recombination in Escherichia coli K12 strains deficient in RecBCD enzyme. , 1987, Journal of general microbiology.

[46]  P. Reeves,et al.  Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae , 1989, Journal of bacteriology.

[47]  I. Tessman,et al.  Further evidence that transposition of Tn5 in Escherichia coli is strongly enhanced by constitutively activated RecA proteins , 1992, Journal of bacteriology.

[48]  S. R. Kushner,et al.  Genetic recombination in Escherichia coli: the role of exonuclease I. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Modrich,et al.  Mechanisms and biological effects of mismatch repair. , 1991, Annual review of genetics.

[50]  S. Kowalczykowski,et al.  RecBCD-dependent joint molecule formation promoted by the Escherichia coli RecA and SSB proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. R. Kushner,et al.  Biochemical and physical characterization of exonuclease V from Escherichia coli. Comparison of the catalytic activities of the RecBC and RecBCD enzymes. , 1990, The Journal of biological chemistry.

[52]  B. Bachmann,et al.  Pedigrees of some mutant strains of Escherichia coli K-12. , 1972, Bacteriological reviews.

[53]  M. Radman,et al.  Structure of recombinants from conjugational crosses between Escherichia coli donor and mismatch-repair deficient Salmonella typhimurium recipients. , 1994, Genetics.

[54]  Christopher G. Dowson,et al.  Localized sex in bacteria , 1991, Nature.

[55]  K. Sanderson,et al.  F + , Hfr, and F' strains of Salmonella typhimurium and Salmonella abony. , 1972, Bacteriological reviews.

[56]  C. Radding,et al.  Insertions, deletions and mismatches in heteroduplex DNA made by recA protein , 1983, Cell.

[57]  M. Radman Mismatch repair and the fidelity of genetic recombination. , 1989, Genome.

[58]  E. Witkin Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. , 1976, Bacteriological reviews.

[59]  K. Low The Recombination of genetic material , 1988 .

[60]  M. Radman,et al.  Interspecific recombination between Escherichia coli and Salmonella typhimurium occurs by the RecABCD pathway. , 1991, Biochimie.

[61]  M. Radman,et al.  The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants , 1989, Nature.

[62]  H. N. Magoun Thomas, Springfield, Illinois , 1965 .

[63]  M. Riley,et al.  Location and analysis of nucleotide sequences at one end of a putative lac transposon in the Escherichia coli chromosome , 1984, Journal of bacteriology.

[64]  H. Echols SOS functions, cancer and inducible evolution , 1981, Cell.

[65]  N. Eldredge,et al.  Punctuated equilibrium comes of age , 1993, Nature.

[66]  J. W. Little,et al.  Autodigestion of lexA and phage lambda repressors. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J Ninio,et al.  Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. , 1991, Genetics.

[68]  J. Drake,et al.  Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  F. Jacob,et al.  Sexuality and the genetics of bacteria. , 1961 .

[70]  K. Timmis,et al.  An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. Radding,et al.  Polar branch migration promoted by recA protein: effect of mismatched base pairs. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Gemski,et al.  Intergeneric bacterial matings. , 1968, Bacteriological reviews.