Investigation on evolutionary algorithms powered by nonrandom processes

Inherent part of evolutionary algorithms that are based on Darwin’s theory of evolution and Mendel’s theory of genetic heritage, are random processes since genetic algorithms and evolutionary strategies are used. In this paper, we present extended experiments (of our previous) of selected evolutionary algorithms and test functions showing whether random processes really are needed in evolutionary algorithms. In our experiments we used differential evolution and SOMA algorithms with functions 2ndDeJong, Ackley, Griewangk, Rastrigin, SineWave and StretchedSineWave. We use n periodical deterministic processes (based on deterministic chaos principles) instead of pseudo-random number generators (PRGNs) and compare performance of evolutionary algorithms powered by those processes and by PRGNs. Results presented here are numerical demonstrations rather than mathematical proofs. We propose the hypothesis that a certain class of deterministic processes can be used instead of PRGNs without lowering the performance of evolutionary algorithms.

[1]  Michal Pluhacek,et al.  Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study , 2013, NOSTRADAMUS.

[2]  P-M Binder,et al.  Unstable periodic orbits and discretization cycles. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Bijaya Ketan Panigrahi,et al.  Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm , 2013 .

[4]  Hoover,et al.  Finite-precision stationary states at and away from equilibrium , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Xingyuan Wang,et al.  DESIGN OF PSEUDO-RANDOM BIT GENERATOR BASED ON CHAOTIC MAPS , 2012 .

[6]  René Lozi,et al.  Emergence of Randomness from Chaos , 2012, Int. J. Bifurc. Chaos.

[7]  Luigi Fortuna,et al.  Does chaos work better than noise , 2002 .

[8]  M. Drutarovsky,et al.  A Robust Chaos-Based True Random Number Generator Embedded in Reconfigurable Switched-Capacitor Hardware , 2007, 2007 17th International Conference Radioelektronika.

[9]  Michal Pluhacek,et al.  Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution , 2012, SOCO.

[10]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[11]  Roman Senkerik,et al.  Chaos driven evolutionary algorithms for the task of PID control , 2010, Comput. Math. Appl..

[12]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[13]  Ivan Zelinka,et al.  Chaos Powered Selected Evolutionary Algorithms , 2013, NOSTRADAMUS.

[14]  Michal Pluhacek,et al.  On the behavior and performance of chaos driven PSO algorithm with inertia weight , 2013, Comput. Math. Appl..

[15]  Radomil Matousek,et al.  Promising GAHC and HC12 algorithms in global optimization tasks , 2011, Optim. Methods Softw..

[16]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[17]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[18]  Michal Pluhacek,et al.  Do evolutionary algorithms indeed require randomness? , 2013, 2013 IEEE Congress on Evolutionary Computation.

[19]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[20]  R. Povinelli,et al.  Analyzing Logistic Map Pseudorandom Number Generators for Periodicity Induced by Finite Precision Floating-Point Representation , 2012 .

[21]  Michal Pluhacek,et al.  Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map , 2012, NOSTRADAMUS.

[22]  Ivan Zelinka,et al.  SOMA—Self-organizing Migrating Algorithm , 2016 .

[23]  R. Ruthen The Frustrations of a Quark Hunter , 1992 .

[24]  Nithin Nagaraj,et al.  Increasing average period lengths by switching of robust chaos maps in finite precision , 2008, 0811.1823.

[25]  C. Tsallis,et al.  Noise, synchrony, and correlations at the edge of chaos. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Xing-yuan Wang,et al.  A new pseudo-random number generator based on CML and chaotic iteration , 2012 .

[27]  Radomil Matousek GAHC: Improved Genetic Algorithm , 2007, NICSO.

[28]  Michal Pluhacek,et al.  Hidden Periodicity - Chaos Dependance on Numerical Precision , 2013, NOSTRADAMUS.

[29]  Vinod Patidar,et al.  A Random Bit Generator Using Chaotic Maps , 2010, Int. J. Netw. Secur..

[30]  Roman Senkerik,et al.  Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures , 2011 .

[31]  Lingbo Zhang,et al.  A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems , 2012, Neurocomputing.

[32]  Chia Tt,et al.  Maps with precision-dependent periods. , 1991 .

[33]  Ivan Zelinka,et al.  Evolutionary Algorithms and Chaotic Systems , 2010, Evolutionary Algorithms and Chaotic Systems.

[34]  Longa,et al.  Roundoff-induced coalescence of chaotic trajectories. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Lingfeng Liu,et al.  Pseudorandom sequence generator based on the Chen chaotic system , 2013, Comput. Phys. Commun..

[36]  Ángel Corberán,et al.  Scatter search , 2003 .