Learning from the opposite: Strategies for Ants that solve multidimensional Knapsack problem

This work presents different opposite learning strategies for Ant Knapsack, an ant based algorithm for the Multidimensional Knapsack Problem. We propose to include a previous opposite learning phase to Ant Knapsack, for discarding regions of the search space. This opposite knowledge is then used by Ant Knapsack for solving the original problem. The objective is to improve the search process of Ant Knapsack maintaining its original design. We present three strategies which differ on how the solutions can be constructed on a opposite way. The results obtained are promising and encourage to use this approach for solving other problems.

[1]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[2]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[3]  Hamid R. Tizhoosh,et al.  Applying Opposition-Based Ideas to the Ant Colony System , 2007, 2007 IEEE Swarm Intelligence Symposium.

[4]  Günther R. Raidl,et al.  The Core Concept for the Multidimensional Knapsack Problem , 2006, EvoCOP.

[5]  Alice R. Malisia Improving the Exploration Ability of Ant-Based Algorithms , 2008, Oppositional Concepts in Computational Intelligence.

[6]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[7]  Zuren Feng,et al.  An ant colony optimization approach for the multidimensional knapsack problem , 2010, J. Heuristics.

[8]  Z. Michalewicz,et al.  A new version of ant system for subset problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  Thomas Bartz-Beielstein,et al.  Experimental research in evolutionary computation , 2007, GECCO '07.

[10]  Stefka Fidanova,et al.  ACO Algorithm for MKP Using Various Heuristic Information , 2002, Numerical Methods and Application.

[11]  Christine Solnon,et al.  Ant algorithm for the multidimensional knapsack problem , 2004 .

[12]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[13]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[14]  Marcus Randall,et al.  Anti-pheromone as a Tool for Better Exploration of Search Space , 2002, Ant Algorithms.