Bias in the Localization of Curved Edges

This paper presents a theoretical and experimental analysis of the bias in the localization of edges detected from the zeros of the second derivative of the image in the direction of its gradient, such as the Canny edge detector. Its contributions over previous art are: a quantification of the localization bias as a function of the scale σ of the smoothing filter and the radius of curvature R of the edge, which unifies, without any approximation, previous results that independently studied the case of R≫σ or σ≫ R; the determination of an optimal scale at which edge curvature can be accurately recovered for circular objects; and a technique to compensate for the localization bias which can be easily incorporated into existing algorithms for edge detection. The theoretical results are validated by experiments with synthetic data, and the bias correction algorithm introduced here is reduced to practice on real images.

[1]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[2]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  D. Forsyth,et al.  Fast recognition using algebraic invariants , 1992 .

[4]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[5]  Fredrik Bergholm,et al.  Edge Focusing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Rachid Deriche,et al.  A computational approach for corner and vertex detection , 1993, International Journal of Computer Vision.

[7]  Rachid Deriche Gerard Giraudoii,et al.  Accurate Corner Detection : An Analytical Study , 2004 .

[8]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[9]  Lucas J. van Vliet,et al.  On the Location Error of Curved Edges in Low-Pass Filtered 2-D and 3-D Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Lucas J. van Vliet,et al.  Edge localization by MoG filters: Multiple-of-Gaussians , 1994, Pattern Recognit. Lett..

[11]  Alfred O. Hero,et al.  On achievable accuracy in edge localization , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[12]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[13]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Narendra Ahuja,et al.  A multiscale region detector , 1989, Comput. Vis. Graph. Image Process..

[15]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[16]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[17]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Alex Pentland,et al.  A New Sense for Depth of Field , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  V. Berzins Accuracy of laplacian edge detectors , 1984 .

[21]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[22]  Michael A. Chapman,et al.  High-precision target location for industrial metrology , 1993 .

[23]  Andrew Zisserman,et al.  Recognizing general curved objects efficiently , 1992 .

[24]  Owen Robert Mitchell,et al.  Precision Edge Contrast and Orientation Estimation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  James J. Clark Authenticating Edges Produced by Zero-Crossing Algorithms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.