Roadmap to free space optics

With the ever-increasing demand for data and the radio frequency spectrum becoming congested, free space optics (FSO) may find a niche for situations where fiber is too expensive or too difficult to install. FSO is a cross-disciplinary field that draws from radio and fiber communication, astronomy, and even quantum optics, and it has seen major advances over the last three decades. In this tutorial-style review, we provide a broad overview of many of the important topics required to design, develop, and research the next generation of FSO technology.

[1]  M.A. Neifeld,et al.  Rateless Coding on Experimental Temporally Correlated FSO Channels , 2010, Journal of Lightwave Technology.

[2]  Junhe Zhou,et al.  Coupled mode theory for orbital angular momentum modes transmission in the presence of atmosphere turbulence. , 2015, Optics express.

[3]  Debbie Kedar,et al.  Urban optical wireless communication networks: the main challenges and possible solutions , 2004, IEEE Communications Magazine.

[4]  Ming Li Phase Corrections With Adaptive Optics and Gerchberg-Saxton Iteration: A Comparison , 2019, IEEE Access.

[5]  Mohamed-Slim Alouini,et al.  An Experimental Study of FSO Link Performance in Desert Environment , 2016, IEEE Communications Letters.

[6]  Murat Uysal,et al.  Do We Really Need OSTBCs for Free-Space Optical Communication with Direct Detection? , 2008, IEEE Transactions on Wireless Communications.

[7]  M. Neifeld,et al.  Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. , 2008, Applied optics.

[8]  Andrew Forbes,et al.  Propagation of orbital angular momentum carrying beams through a perturbing medium , 2013 .

[9]  Larry C. Andrews,et al.  Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere , 1992 .

[10]  Isaac Nape,et al.  Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication , 2017, Journal of Lightwave Technology.

[11]  Jian Wang,et al.  Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[12]  Ivan B Djordjevic,et al.  500  Gb/s free-space optical transmission over strong atmospheric turbulence channels. , 2016, Optics letters.

[13]  Peterson,et al.  Daylight quantum key distribution over 1.6 km , 2000, Physical review letters.

[14]  Isaac I. Kim,et al.  Scintillation reduction using multiple transmitters , 1997, Photonics West.

[15]  Yoshinori Arimoto,et al.  Preliminary result on laser communication experiment using (ETS-VI) , 1995, Photonics West.

[16]  Salah Bourennane,et al.  Channel coding and time-diversity for optical wireless links. , 2009, Optics express.

[17]  Mohamed-Slim Alouini,et al.  Free-space optical channel characterization and experimental validation in a coastal environment. , 2018, Optics express.

[18]  Gerd Leuchs,et al.  Free-space propagation of high-dimensional structured optical fields in an urban environment , 2017, Science Advances.

[19]  Ming Li,et al.  Evaluation of channel capacities of OAM-based FSO link with real-time wavefront correction by adaptive optics. , 2014, Optics express.

[20]  Jaedon Park,et al.  Performance Analysis of the Asymmetric Dual-Hop Relay Transmission With Mixed RF/FSO Links , 2011, IEEE Photonics Technology Letters.

[21]  Stefan Videv,et al.  Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas , 2019, Energies.

[22]  Joseph M. Kahn,et al.  Capacity limits of spatially multiplexed free-space communication , 2015 .

[23]  Mohamed-Slim Alouini,et al.  Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System Under Light Sand Storm Condition , 2017, IEEE Photonics Journal.

[24]  Zabih Ghassemlooy,et al.  BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence , 2009, Journal of Lightwave Technology.

[25]  Gotthard Oppenhauser,et al.  In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX , 2002, SPIE LASE.

[26]  Bane Vasic,et al.  Modeling channel interference in an orbital angular momentum-multiplexed laser link , 2009, Optical Engineering + Applications.

[27]  Robert W. Boyd,et al.  Divergence of an orbital-angular-momentum-carrying beam upon propagation , 2014, 1410.8722.

[28]  Mohamed-Slim Alouini,et al.  Outdoor FSO Communications Under Fog: Attenuation Modeling and Performance Evaluation , 2016, IEEE Photonics Journal.

[29]  Paul L. Csonka,et al.  Demonstration of free-space optical communication for long-range data links between balloons on Project Loon , 2017, LASE.

[30]  P E Young,et al.  High-speed horizontal-path atmospheric turbulence correction with a large-actuator-number microelectromechanical system spatial light modulator in an interferometric phase-conjugation engine. , 2004, Optics letters.

[31]  Mourad Zghal,et al.  Encoding information using Laguerre Gaussian modes over free space turbulence media. , 2016, Optics letters.

[32]  Edward F. Crawley,et al.  A technical comparison of three low earth orbit satellite constellation systems to provide global broadband , 2019, Acta Astronautica.

[33]  G. Contestabile,et al.  1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications , 2009, IEEE Journal on Selected Areas in Communications.

[34]  William Shieh,et al.  N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes , 2014, 2014 The European Conference on Optical Communication (ECOC).

[35]  R. Boyd,et al.  Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication , 2013, 1301.7454.

[36]  K. Zou,et al.  1 λ × 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM. , 2016, Optics express.

[37]  Qian Shinan,et al.  多機能ロングトレースプロファイラの設計 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2007 .

[38]  M. A. Amirabadi Deep Learning for channel estimation in FSO communication system , 2020 .

[39]  Andrew Forbes,et al.  Modal Diversity for Robust Free-Space Optical Communications , 2017, Physical Review Applied.

[40]  Dirk Giggenbach,et al.  142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation , 2006, SPIE LASE.

[41]  Isaac I. Kim,et al.  Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications , 2001, SPIE Optics East.

[42]  Mohamed-Slim Alouini,et al.  Communicating Using Spatial Mode Multiplexing: Potentials, Challenges, and Perspectives , 2018, IEEE Communications Surveys & Tutorials.

[43]  R. Frehlich,et al.  Simulation of laser propagation in a turbulent atmosphere. , 2000, Applied optics.

[44]  R. Lane,et al.  Simulation of a Kolmogorov phase screen , 1992 .

[45]  M. Uysal,et al.  Novel Adaptive Transmission Algorithms for Free-Space Optical Links , 2012, IEEE Transactions on Communications.

[46]  Ting Wang,et al.  Polarization-Multiplexed Optical Wireless Transmission With Coherent Detection , 2010, Journal of Lightwave Technology.

[47]  R. Fante Electromagnetic beam propagation in turbulent media , 1975, Proceedings of the IEEE.

[48]  Giovanni Milione,et al.  The Resilience of Hermite– and Laguerre–Gaussian Modes in Turbulence , 2019, Journal of Lightwave Technology.

[49]  David A B Miller Better choices than optical angular momentum multiplexing for communications , 2017, Proceedings of the National Academy of Sciences.

[50]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[51]  Jeffrey H. Shapiro,et al.  Capacity of wireless optical communications , 2003, IEEE J. Sel. Areas Commun..

[52]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[53]  Yinwen Cao,et al.  Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. , 2015, Optics letters.

[54]  Andrew Forbes,et al.  Structured light with digital micromirror devices: a guide to best practice , 2019 .

[55]  Klaus David,et al.  6G Vision and Requirements: Is There Any Need for Beyond 5G? , 2018, IEEE Vehicular Technology Magazine.

[56]  R. Schober,et al.  Performance and Design of Coherent and Differential Space-Time Coded FSO Systems , 2012, Journal of Lightwave Technology.

[57]  J. Churnside,et al.  Wander of an optical beam in the turbulent atmosphere. , 1990, Applied optics.

[58]  Chao Lu,et al.  An Optical Communication's Perspective on Machine Learning and Its Applications , 2019, Journal of Lightwave Technology.

[59]  David L. Fried,et al.  Aperture Averaging of Scintillation , 1967 .

[60]  Mohamed-Slim Alouini,et al.  Outage Probability Analysis of FSO Links Over Foggy Channel , 2017, IEEE Photonics Journal.

[61]  Murat Uysal,et al.  Survey on Free Space Optical Communication: A Communication Theory Perspective , 2014, IEEE Communications Surveys & Tutorials.

[62]  Steve Hranilovic,et al.  Soft-switching hybrid FSO/RF links using short-length raptor codes: design and implementation , 2009, IEEE Journal on Selected Areas in Communications.

[63]  Mohamed-Slim Alouini,et al.  Identifying structured light modes in a desert environment using machine learning algorithms. , 2020, Optics express.

[64]  Tadashi Takano,et al.  Comparison of microwave and light wave communication systems in space applications , 2005, SPIE Optical Systems Design.

[65]  Mojtaba Mansour Abadi,et al.  Tackling Africa’s digital divide , 2018, Nature Photonics.

[66]  A. Willner,et al.  High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-Momentum Beams , 2017, Scientific Reports.

[67]  Yupeng Li,et al.  Gerchberg-Saxton algorithm based phase correction in optical wireless communication , 2017, Phys. Commun..

[68]  Yinwen Cao,et al.  Demonstration of a 10  Mbit/s quantum communication link by encoding data on two Laguerre-Gaussian modes with different radial indices. , 2018, Optics letters.

[69]  Kishan Dholakia,et al.  Is there an optimal basis to maximise optical information transfer? , 2016, Scientific Reports.

[70]  Sanjaya Lohani,et al.  Turbulence correction with artificial neural networks. , 2018, Optics letters.

[71]  Ranjan K. Mallik,et al.  Performance analysis of MIMO free-space optical systems in gamma-gamma fading , 2009, IEEE Transactions on Communications.

[72]  I. Djordjevic Adaptive Modulation and Coding for Free-Space Optical Channels , 2010, IEEE/OSA Journal of Optical Communications and Networking.

[73]  S. Bourennane,et al.  Fading Reduction by Aperture Averaging and Spatial Diversity in Optical Wireless Systems , 2009, IEEE/OSA Journal of Optical Communications and Networking.

[74]  Murat Uysal,et al.  Relay-Assisted Free-Space Optical Communication , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[75]  D. G. Brennan Linear Diversity Combining Techniques , 1959, Proceedings of the IRE.

[76]  Hai-Han Lu,et al.  64 Gb/s PAM4 VCSEL-based FSO link. , 2017, Optics express.

[77]  Eric J. Korevaar,et al.  Understanding the performance of free-space optics [Invited] , 2003 .

[78]  C. M. Simmons,et al.  Practical free-space quantum key distribution over 1 km , 1998 .

[79]  Jian Wang,et al.  Multidimensional spatial entanglement transfer through our existing fiber optic network , 2020, Other Conferences.

[80]  Mohamed-Slim Alouini,et al.  What should 6G be? , 2019 .

[81]  Curt M. Schieler,et al.  TeraByte InfraRed Delivery (TBIRD): a demonstration of large-volume direct-to-Earth data transfer from low-Earth orbit , 2018, LASE.

[82]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[83]  A. Willner,et al.  100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. , 2014, Optics letters.

[84]  Joseph M Kahn,et al.  Diversity-multiplexing tradeoff in mode-division multiplexing. , 2014, Optics letters.

[85]  Julio C Gutiérrez-Vega,et al.  Ince-Gaussian modes of the paraxial wave equation and stable resonators. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[86]  Mojtaba Mansour Abadi,et al.  A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver , 2019, Scientific Reports.

[87]  Brian Hansen,et al.  NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance , 2009, Defense + Commercial Sensing.

[88]  Andrew Forbes,et al.  On the resilience of scalar and vector vortex modes in turbulence. , 2016, Optics express.

[89]  Joseph M. Kahn,et al.  Performance bounds for coded free-space optical communications through atmospheric turbulence channels , 2003, IEEE Trans. Commun..

[90]  H. Eyyuboğlu Scintillation behaviour of vortex beams in strong turbulence region , 2016 .

[91]  A. Forbes,et al.  Characterizing quantum channels with non-separable states of classical light , 2017, Nature Physics.

[92]  Moshe Tur,et al.  400-Gbit/s QPSK free-space optical communicationlink based on four-fold multiplexing of Hermite-Gaussian or Laguerre-Gaussian modes by varying both modal indices. , 2018, Optics letters.

[93]  Georges Kaddoum,et al.  Optical Communication in Space: Challenges and Mitigation Techniques , 2017, IEEE Communications Surveys & Tutorials.

[94]  Jiankun Zhang,et al.  Fractal phase screen generation algorithm for atmospheric turbulence , 2015 .

[95]  S. Hranilovic,et al.  Outage Capacity Optimization for Free-Space Optical Links With Pointing Errors , 2007, Journal of Lightwave Technology.

[96]  Choi Narak,et al.  一般化Harvey-Shack表面散乱理論の数値的検証 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2013 .

[97]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[98]  Mourad Zghal,et al.  Optical communication beyond orbital angular momentum , 2016, Scientific Reports.

[99]  Feng Tian,et al.  Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. , 2018, Optics express.

[100]  Changhui Rao,et al.  Wavefront sensorless adaptive optics: a general model-based approach. , 2011, Optics express.

[101]  A. Willner,et al.  Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link , 2014 .

[102]  Dianyuan Fan,et al.  Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. , 2019, Optics express.

[103]  M. Toyoshima,et al.  Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite , 2017, 1707.08154.

[104]  V.W.S. Chan,et al.  Free-Space Optical Communications , 2006, Journal of Lightwave Technology.

[105]  Gorazd Kandus,et al.  Weather effects on hybrid FSO/RF communication link , 2009, IEEE Journal on Selected Areas in Communications.

[106]  Manav R. Bhatnagar,et al.  Experimental Investigation of All-Optical Relay-Assisted 10 Gb/s FSO Link Over the Atmospheric Turbulence Channel , 2017, Journal of Lightwave Technology.

[107]  Mikhail Charnotskii Comparison of four techniques for turbulent phase screens simulation. , 2020, Journal of the Optical Society of America. A, Optics, image science, and vision.

[108]  Majid Safari,et al.  Spatial-Mode Diversity and Multiplexing for FSO Communication With Direct Detection , 2017, IEEE Transactions on Communications.

[109]  Olga Korotkova,et al.  General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[110]  Isaac I. Kim,et al.  Availability of free-space optics (FSO) and hybrid FSO/RF systems , 2001, SPIE ITCom.

[111]  G. Chang,et al.  $4\times100$ -Gb/s PAM-4 FSO Transmission Based on Polarization Modulation and Direct Detection , 2019, IEEE Photonics Technology Letters.

[112]  Imran Khan,et al.  Quantum-limited measurements of optical signals from a geostationary satellite , 2016, ArXiv.

[113]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .

[114]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[115]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[116]  Bryan S. Robinson,et al.  Overview and results of the Lunar Laser Communication Demonstration , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[117]  Robert Schober,et al.  EDFA-Based All-Optical Relaying in Free-Space Optical Systems , 2012 .

[118]  H. A. Willebrand,et al.  Fiber optics without fiber , 2001 .

[119]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[120]  M. Padgett,et al.  Comparing the information capacity of Laguerre-Gaussian and Hermite-Gaussian modal sets in a finite-aperture system. , 2016, Optics express.

[121]  M. Krutzik,et al.  Nanosatellites for quantum science and technology , 2017 .

[122]  Murat Uysal,et al.  End-to-end performance of mixed RF/FSO transmission systems , 2013, IEEE/OSA Journal of Optical Communications and Networking.

[123]  A. Willner,et al.  4 × 20  Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. , 2014, Optics letters.

[124]  Christos K Datsikas,et al.  Serial Free-Space Optical Relaying Communications Over Gamma-Gamma Atmospheric Turbulence Channels , 2010, IEEE/OSA Journal of Optical Communications and Networking.

[125]  Christian Fuchs,et al.  Sota optical downlinks to DLR’s optical ground stations , 2017, International Conference on Space Optics.

[126]  R. Hill,et al.  Probability distribution of irradiance for the onset of strong scintillation , 1997 .

[127]  Yan Yan,et al.  Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[128]  Elizabeth A. Martinsen,et al.  Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications. , 1998 .

[129]  Mario Krenn,et al.  Phenomenology of complex structured light in turbulent air. , 2019, Optics express.

[130]  Giovanni Milione,et al.  Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite-Gaussian modes for free-space optical communication. , 2017, Optics letters.

[131]  Ali Shahpari,et al.  Optical wireless transmission at 1.6-Tbit/s (16×100  Gbit/s) for next-generation convergent urban infrastructures , 2013 .

[132]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[133]  J. Churnside Aperture averaging of optical scintillations in the turbulent atmosphere. , 1991, Applied optics.

[134]  Peter J. Winzer,et al.  Making spatial multiplexing a reality , 2014, Nature Photonics.

[135]  Moshe Tur,et al.  Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. , 2016, Optics letters.