The ionized gas in the CALIFA early-type galaxies I. Mapping two representative cases: NGC 6762 and NGC 5966

As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 A) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 A] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.

[1]  IC 4200: a gas-rich early-type galaxy formed via a major merger , 2006, astro-ph/0602621.

[2]  K. Schawinski,et al.  Observational evidence for AGN feedback in early-type galaxies , 2007, 0709.3015.

[3]  H Germany,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - II. Spatially resolved stellar populations and excitation conditions, , 2010, 1006.2219.

[4]  Luth,et al.  A comprehensive classification of galaxies in the SDSS: How to tell true from fake AGN? , 2010, 1012.4426.

[5]  L. Colina,et al.  Two-dimensional Kinematical and Ionization Structure of the Warm Gas in the Nuclear Regions of Arp 220 , 2001 .

[6]  J. Bland-Hawthorn,et al.  THREE-DIMENSIONAL INTEGRAL FIELD OBSERVATIONS OF 10 GALACTIC WINDS. I. EXTENDED PHASE (≳10 Myr) OF MASS/ENERGY INJECTION BEFORE THE WIND BLOWS , 2010, 1001.4315.

[7]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[8]  A. Kniazev,et al.  Ionized gas in E/S0 galaxies with dust lanes (Finkelman+, 2010) , 2010, 1005.4227.

[9]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[10]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[11]  Andreas Kelz,et al.  PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2006 .

[12]  M. Dopita,et al.  Spectral Signatures of Fast Shocks. II. Optical Diagnostic Diagrams , 1995 .

[13]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[14]  L. Kewley,et al.  GALAXY-WIDE SHOCKS IN LATE-MERGER STAGE LUMINOUS INFRARED GALAXIES , 2011, 1104.1177.

[15]  Chile,et al.  The star formation history of Seyfert 2 nuclei , 2004 .

[16]  R. Bender,et al.  A survey of the ISM in early-type galaxies. I. The ionized gas , 1996 .

[17]  A comprehensive study of reported high-metallicity giant H ii regions — I. Detailed abundance analysis , 2001, astro-ph/0109115.

[18]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[19]  J. Iglesias-Páramo,et al.  Bidimensional Spectroscopic Mapping and Chemical Abundances of the Star-forming Dwarf Galaxy I Zw 18 , 1998 .

[20]  Dong-Woo Kim Interstellar matter in early-type galaxies - Optical observations , 1989 .

[21]  A. Monreal-Ibero,et al.  A study of the interplay between ionized gas and star clusters in the central region of NGC 5253 with 2D spectroscopy , 2010, 1003.5329.

[22]  The nitrogen-to-oxygen evolution in galaxies: the role of the star formation rate , 2006, astro-ph/0608214.

[23]  O. Streicher,et al.  A 2D multiwavelength study of the ionized gas and stellar population in the giant H ii region NGC 588 , 2011, 1101.1853.

[24]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[25]  Z. Tsvetanov,et al.  Anisotropic ionizing radiation in NGC5252 , 1989, Nature.

[26]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[27]  Brazil,et al.  Alternative diagnostic diagrams and the 'forgotten' population of weak line galaxies in the SDSS , 2009, 0912.1643.

[28]  W. Forman,et al.  X-ray observations of galaxies in the Virgo cluster. , 1979 .

[29]  P. Ocvirk FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY , 2009, 0911.3156.

[30]  Duncan A. Forbes,et al.  A catalogue and analysis of X-ray luminosities of early-type galaxies , 2001 .

[31]  A. Bolatto,et al.  The SAURON project: XV. Modes of star formation in early-type galaxies and the evolution of the red sequence , 2009, 0912.0274.

[32]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[33]  M. Dopita,et al.  OPTICAL IFU OBSERVATIONS OF THE BRIGHTEST CLUSTER GALAXY NGC 4696: THE CASE FOR A MINOR MERGER AND SHOCK-EXCITED FILAMENTS , 2010, 1009.3070.

[34]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[35]  W. Cotton,et al.  Radio Sources and Star Formation in the Local Universe , 2002 .

[36]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[37]  Spain.,et al.  Testing spectral models for stellar populations with star clusters – I. Methodology , 2009, 0912.0410.

[38]  M. Dopita Optical emission from shock waves. I. Abundances in N49 , 1976 .

[39]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[40]  The blue compact dwarf galaxy I Zw 18: A comparative study of its low-surface-brightness component , 2002, astro-ph/0207314.

[41]  M. Dopita,et al.  The LINER Nucleus of M87: A Shock-excited Dissipative Accretion Disk , 1997 .

[42]  Ginevra Trinchieri,et al.  An X-ray catalog and atlas of galaxies. (Fabbiano+, 1992) , 1992 .

[43]  H. Butcher,et al.  EXTENDED GASEOUS EMISSION IN NORMAL ELLIPTICAL GALAXIES , 1984 .

[44]  L. Colina,et al.  LINER-like Extended Nebulae in ULIRGs: Shocks Generated by Merger-Induced Flows , 2005, astro-ph/0509681.

[45]  J. Bregman Galactic winds and the hubble sequence , 1978 .

[46]  Jon A. Morse,et al.  Inclined Gas Disks in the Lenticular Seyfert Galaxy NGC 5252 , 1998 .

[47]  S. Alighieri,et al.  H-alpha images of early type galaxies with hot gas , 1991 .

[48]  J. Silverman,et al.  Jet-Gas Interaction in Markarian 78. II. Ionization Mechanisms , 2005 .

[49]  K. Schawinski,et al.  The SAURON project - XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies , 2009, 0912.0275.

[50]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[51]  W. Zeilinger,et al.  Nearby early-type galaxies with ionized gas - IV. Origin and powering mechanism of the ionized gas , 2010, 1004.1647.

[52]  R. Davies,et al.  The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies , 2011, 1107.0002.

[53]  P. Papaderos,et al.  Optical structure and star formation in blue compact dwarf galaxies. I. Observations and profile decomposition , 1996 .

[54]  O. Nacional,et al.  The interplay between ionized gas and massive stars in the HII galaxy IIZw70: integral field spectroscopy with PMAS , 2007, 0710.5732.

[55]  F. Brighenti,et al.  Self-generated Magnetic Fields in Galactic Cooling Flows , 1997, astro-ph/9706089.

[56]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[57]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[58]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[59]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[60]  N. Caon,et al.  A Survey of the Interstellar Medium in Early-Type Galaxies. III. Stellar and Gas Kinematics , 2000 .

[61]  Luis Colina,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas , 2009, 0907.5105.

[62]  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – III. How to distinguish AGN hosts , 2006, astro-ph/0606724.

[63]  P. Prugniel,et al.  Spectroscopic ages and metallicities of stellar populations : validation of full spectrum fitting , 2008, 0801.0871.