Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels

Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the energy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs relevant to nuclear resonance fluorescence and photofission are provided.

[1]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[2]  Eric Esarey,et al.  Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot x-ray spectroscopy. , 2012 .

[3]  G. Potdevin,et al.  Monochromatic computed tomography with a compact laser-driven X-ray source , 2013, Scientific Reports.

[4]  Glover,et al.  X-Ray Based Subpicosecond Electron Bunch Characterization Using 90 degrees Thomson Scattering. , 1996, Physical review letters.

[5]  Donald Umstadter,et al.  Spectral bandwidth reduction of Thomson scattered light by pulse chirping , 2013 .

[6]  P. Sprangle,et al.  Observation of 20 eV x‐ray generation in a proof‐of‐principle laser synchrotron source experiment , 1995 .

[7]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[8]  Mohammad W. Ahmed,et al.  Research opportunities at the upgraded HIγS facility , 2007 .

[9]  V V Korobkin,et al.  BRIEF COMMUNICATIONS: Laser spark with a continuous channel in air , 1983 .

[10]  J. Cary,et al.  Guiding of relativistic laser pulses by preformed plasma channels. , 2004, Physical review letters.

[11]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[12]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[13]  Benjamin Skipp Pärt , 2013, Tempo.

[14]  V. Nedorezov,et al.  Photonuclear experiments with Compton-backscattered gamma beams , 2004 .

[15]  B. Quiter Transmission Nuclear Resonance Fluorescence Measurements of 238U in Thick Targets , 2011 .

[16]  F. Hartemann,et al.  Precision linac and laser technologies for nuclear photonics gamma-ray sourcesa) , 2012 .

[17]  C. Brau Oscillations in the spectrum of nonlinear Thomson-backscattered radiation , 2004 .

[18]  C. Geddes,et al.  Radiation from laser accelerated electron bunches: coherent terahertz and femtosecond X-rays , 2005, IEEE Transactions on Plasma Science.

[19]  Eric Esarey,et al.  Control of focusing fields in laser-plasma accelerators using higher-order modes , 2011 .

[20]  Zhirong Huang,et al.  A review of x-ray free-electron laser theory. , 2007 .

[21]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[22]  Eric Esarey,et al.  Nonlinear laser energy depletion in laser-plasma accelerators , 2009 .

[23]  Sheldon Wu,et al.  Design of narrow-band Compton scattering sources for nuclear resonance fluorescence , 2011 .

[24]  F. Krausz,et al.  Imaging laser-wakefield-accelerated electrons using miniature magnetic quadrupole lenses , 2011 .

[25]  Esarey,et al.  Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  R. Suzuki,et al.  Linearly polarized photons from Compton backscattering of laser light for nuclear resonance fluorescence experiments , 1994 .

[27]  Eric Esarey,et al.  Physics considerations for laser-plasma linear colliders , 2010 .

[28]  Stepan Bulanov,et al.  Modeling classical and quantum radiation from laser-plasma accelerators , 2013 .

[29]  Richard H. Milburn,et al.  ELECTRON SCATTERING BY AN INTENSE POLARIZED PHOTON FIELD , 1963 .

[30]  Alexeev,et al.  Tubular plasma generation with a high-power hollow bessel beam , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  G. Krafft,et al.  Narrow-band emission in Thomson sources operating in the high-field regime. , 2013, Physical review letters.

[32]  Masaki Kando,et al.  Development of a sub-MeV X-ray source via Compton backscattering , 2011 .

[33]  Anatoly M. Maksimchuk,et al.  Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets , 2014 .

[34]  D. Seipt,et al.  Beam-shape effects in nonlinear Compton and Thomson scattering , 2009, 0911.1622.

[35]  H Schwoerer,et al.  Thomson-backscattered x rays from laser-accelerated electrons. , 2006, Physical review letters.

[36]  Nicolae Victor Zamfir,et al.  Extreme Light Infrastructure ? Nuclear Physics , 2013 .

[37]  Charles A. Brau,et al.  Production of tunable monochromatic x rays by the Vanderbilt free-electron laser , 1999, Photonics West.

[38]  Frederic V. Hartemann,et al.  Detecting clandestine material with nuclear resonance fluorescence , 2006 .

[39]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[40]  G Swift,et al.  Parity measurements of nuclear levels using a free-electron-laser generated gamma-ray beam. , 2001, Physical review letters.

[41]  Troha,et al.  Spectral analysis of the nonlinear relativistic Doppler shift in ultrahigh intensity Compton scattering. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  W. K. Hensley,et al.  Nuclear Resonance Fluorescence Excitations Near 2 MeV in 235U and 239Pu , 2008 .

[43]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[44]  S. G. Anderson,et al.  Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ -ray source , 2010 .

[45]  M. Zolotorev,et al.  A source of kilovolt X-ray , 1995 .

[46]  H. Ohgaki,et al.  High-energy photon radiography system using laser-Compton scattering for inspection of bulk materials , 2002 .

[47]  Eric Esarey,et al.  Tunable laser plasma accelerator based on longitudinal density tailoring , 2011 .

[48]  Robert L. Byer,et al.  Proposed dielectric-based microstructure laser-driven undulator , 2008 .

[49]  C. Sorce,et al.  Development of Compton radiography of inertial confinement fusion implosionsa) , 2011 .

[50]  J. Rosenzweig,et al.  Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. , 2012, Physical review letters.

[51]  W. Panofsky,et al.  A Focusing Device for the External 350‐Mev Proton Beam of the 184‐Inch Cyclotron at Berkeley , 1950 .

[52]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[53]  Ferenc Krausz,et al.  Ultralow emittance electron beams from a laser-wakefield accelerator , 2012 .

[54]  E. Esarey Laser cooling of electron beams via Thomson scattering , 2000 .

[55]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[56]  Ferenc Krausz,et al.  Emittance and divergence of laser wakefield accelerated electrons , 2010 .

[57]  J. Urakawa,et al.  Demonstration of 8 × 10 18 photons / second peaked at 1.8 Å in a relativistic Thomson scattering experiment , 2000 .

[58]  Ying K. Wu,et al.  Theoretical and simulation studies of characteristics of a Compton light source , 2011, 1101.4433.

[59]  E. Esarey,et al.  Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels , 2013, 1304.7299.

[60]  S. V. Bulanov,et al.  Sub-MeV tunably polarized X-ray production with laser Thomson backscattering. , 2008, The Review of scientific instruments.

[61]  Eric Esarey,et al.  Femtosecond x-rays from Thomson scattering using laser wakefield accelerators , 2001 .

[62]  Laser cooling of electron beams for linear colliders , 1996, hep-ex/9610008.

[63]  A. Giulietti,et al.  Thomson backscattering X-rays from ultra-relativistic electron bunches and temporally shaped laser pulses , 2005 .

[64]  W. Fischer Erratum: Robust linear coupling correction withN-turn maps [Phys. Rev. ST Accel. Beams6, 062801 (2003)] , 2007 .

[65]  Andrew G. Glen,et al.  APPL , 2001 .

[66]  J. Madey,et al.  The Compton backscattering process and radiotherapy. , 1997, Medical physics.

[67]  E. Sarachik,et al.  Classical theory of the scattering of intense laser radiation by free electrons , 1970 .

[68]  C. Durfee,et al.  Light pipe for high intensity laser pulses. , 1993, Physical review letters.

[69]  A. Maier,et al.  Demonstration scheme for a laser-plasma driven free-electron laser , 2012 .

[70]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[71]  D. Seipt,et al.  Nonlinear Compton scattering of ultrashort intense laser pulses , 2010, 1010.3301.

[72]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[73]  I. Pogorelsky,et al.  Femtosecond laser synchrotron sources based on Compton scattering in plasma channels , 2000 .

[74]  Martin Dohlus,et al.  Ultraviolet and Soft X-Ray Free-Electron Lasers: Introduction to Physical Principles, Experimental Results, Technological Challenges , 2008 .

[75]  Eric Esarey,et al.  Tunable, short pulse hard x‐rays from a compact laser synchrotron source , 1992 .

[76]  V. Nedorezov Experiments with compton back scattered gamma beams (on GRAAL collaboration results) , 2012, Physics of Particles and Nuclei.

[77]  Zhirong Huang,et al.  Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. , 2012, Physical review letters.

[78]  E. Esarey,et al.  Synchrotron radiation from electron beams in plasma-focusing channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  J. Madey,et al.  Intense Compton γ-ray source from the Duke storage ring FEL , 1996 .

[80]  L. Serafini,et al.  Nonlinear effects in Thomson backscattering , 2013 .

[81]  Kwanpyo Kim,et al.  Femtosecond X-ray Pulses at 0.4 Å Generated by 90° Thomson Scattering: A Tool for Probing the Structural Dynamics of Materials , 1996, Science.

[82]  C. Geddes,et al.  Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. , 2005, Physical review letters.

[83]  Eric Esarey,et al.  Laser-driven plasma-wave electron accelerators , 2009 .

[84]  M. Ferrario,et al.  Design considerations for table-top, laser-based VUV and X-ray free electron lasers , 2007 .

[85]  W. Mori,et al.  Hollow plasma channel for positron plasma wakefield acceleration , 2011 .

[86]  C. Geddes,et al.  Two-color laser-ionization injection. , 2014, Physical review letters.

[87]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[88]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[89]  Jie Zhang,et al.  Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases , 2006 .

[90]  J. Vieira,et al.  Erratum: Polarized beam conditioning in plasma based acceleration [Phys. Rev. ST Accel. Beams14, 071303 (2011)] , 2011 .

[91]  P. Sprangle,et al.  A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons , 1999 .

[92]  A. Krasznahorkay,et al.  Perspectives for photofission studies with highly brilliant, monochromatic γ-ray beams , 2012 .

[93]  M. Yakimenko,et al.  Compton effect on moving electrons , 1964 .

[94]  V. Karagodsky,et al.  High efficiency x-ray source based on inverse Compton scattering in an optical Bragg structure , 2010 .

[95]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[96]  Nobuyuki Nishimori,et al.  Detection of radioactive isotopes by using laser Compton scattered γ-ray beams , 2009 .

[97]  A. Goncharov Invited review article: the electrostatic plasma lens. , 2013, The Review of scientific instruments.

[98]  D. Pestrikov Erratum: Natural BNS damping of the fast ion instability [Phys. Rev. ST Accel. Beams 2, 044403 (1999)] , 2001 .

[99]  J. Vay,et al.  Noninvariance of space- and time-scale ranges under a Lorentz Transformation and the implications for the study of relativistic interactions. , 2007, Physical review letters.

[100]  Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators , 2010 .

[101]  Evidence for a narrow S = +1 baryon resonance in photoproduction from the neutron. , 2003, Physical review letters.

[102]  D. P. Grote,et al.  Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame , 2010 .