Neural network modeling of voltage-dependent resistance of metallic carbon nanotube interconnects: An ab initio study

In this work, development voltage-dependent resistance models of metallic carbon nanotubes for computer aided design tools is aimed. Firstly, the resistance of metallic carbon nanotube interconnects are obtained from first principles simulations and the voltage dependence of the resistance is modeled through neural networks. Self-consistent non-equilibrium Green's function formalism combined with density functional theory is used for calculating the voltage-dependent resistance of metallic carbon nanotubes. It is shown that voltage dependent resistances of carbon nanotubes obtained from ab initio simulations can be accurately modeled via neural networks which enable rapid integration of carbon nanotube interconnect models into electronic design automation tools.

[1]  G. Miano,et al.  Performance Comparison Between Metallic Carbon Nanotube and Copper Nano-Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[2]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[3]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[4]  Jan M. Rabaey,et al.  Digital Integrated Circuits , 2003 .

[5]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[6]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[7]  Rui Guo,et al.  Transport properties of T-shaped and crossed junctions based on graphene nanoribbons , 2009, Nanotechnology.

[8]  Gerhard Klimeck,et al.  Non-equilibrium Green’s function (NEGF) simulation of metallic carbon nanotubes including vacancy defects , 2007 .

[9]  Supriyo Datta,et al.  A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes , 1999 .

[10]  A. Afzali,et al.  Carbon Nanotube Electronics and Optoelectronics , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[11]  Ke-Qiu Chen,et al.  Electronic transport properties in doped C60 molecular devices , 2009 .

[12]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[13]  M. Anantram,et al.  Effect of scattering and contacts on current and electrostatics in carbon nanotubes , 2005, cond-mat/0503769.

[14]  Current-carrying capacity of carbon nanotubes , 1999, cond-mat/9912467.

[15]  P. Burke Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .

[16]  Kaustav Banerjee,et al.  Performance analysis of carbon nanotube interconnects for VLSI applications , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[17]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[18]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[19]  First-principles calculations: half-metallic Au-V(Cr) quantum wires as spin filters. , 2009, Nanotechnology.

[20]  M. Avci,et al.  Neural network-based design approach for submicron MOS integrated circuits , 2008, Math. Comput. Simul..

[21]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for GSI , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[22]  G. B. Abadir,et al.  Basis-set choice for DFT/NEGF simulations of carbon nanotubes , 2009 .

[23]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[24]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[25]  A. Di Carlo,et al.  DFT Modeling of Bulk-Modulated Carbon Nanotube Field-Effect Transistors , 2007, IEEE Transactions on Nanotechnology.

[26]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[27]  Y. Kawazoe,et al.  Designing nanogadgets by interconnecting carbon nanotubes with zinc layers. , 2008, ACS nano.