Combining nondeterminism, probability, and termination: equational and metric reasoning

We study monads resulting from the combination of nondeterministic and probabilistic behaviour with the possibility of termination, which is essential in program semantics. Our main contributions are presentation results for the monads, providing equational reasoning tools for establishing equivalences and distances of programs.

[1]  Paolo Baldan,et al.  Behavioral Metrics via Functor Lifting , 2014, FSTTCS.

[2]  Matteo Mio,et al.  Monads and Quantitative Equational Theories for Nondeterminism and Probability , 2020, CONCUR.

[3]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electronic Notes in Theoretical Computer Science.

[4]  Bart Jacobs,et al.  Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems , 2008, CMCS.

[5]  Joël Ouaknine,et al.  Axioms for Probability and Nondeterminism , 2004, EXPRESS.

[6]  Bart Jacobs,et al.  Convexity, Duality and Effects , 2010, IFIP TCS.

[7]  Michael W. Mislove On Combining Probability and Nondeterminism , 2006, Electron. Notes Theor. Comput. Sci..

[8]  Prakash Panangaden,et al.  On the axiomatizability of quantitative algebras , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[9]  Filippo Bonchi,et al.  Bialgebraic Semantics for Logic Programming , 2015, Log. Methods Comput. Sci..

[10]  Jean Goubault-Larrecq,et al.  Continuous Previsions , 2007, CSL.

[11]  Ernst-Erich Doberkat,et al.  Eilenberg-Moore algebras for stochastic relations , 2006, Inf. Comput..

[12]  M. H. Stone Postulates for the barycentric calculus , 1949 .

[13]  Kim G. Larsen,et al.  A Complete Quantitative Deduction System for the Bisimilarity Distance on Markov Chains , 2017, Log. Methods Comput. Sci..

[14]  Ana Sokolova,et al.  Probabilistic systems coalgebraically: A survey , 2011, Theor. Comput. Sci..

[15]  Kim G. Larsen,et al.  Compositional bisimulation metric reasoning with Probabilistic Process Calculi , 2016, Log. Methods Comput. Sci..

[16]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[17]  Erik P. de Vink,et al.  A hierarchy of probabilistic system types , 2003, CMCS.

[18]  Franck van Breugel,et al.  The Metric Monad for Probabilistic Nondeterminism , 2006 .

[19]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[20]  Michael W. Mislove Nondeterminism and Probabilistic Choice: Obeying the Laws , 2000, CONCUR.

[21]  Ana Sokolova,et al.  Termination in Convex Sets of Distributions , 2017, CALCO.

[22]  Ana Sokolova,et al.  Presenting convex sets of probability distributions by convex semilattices and unique bases , 2020, CALCO.

[23]  Alexandra Silva,et al.  The Power of Convex Algebras , 2017, CONCUR.

[24]  Jean Goubault-Larrecq Prevision Domains and Convex Powercones , 2008, FoSSaCS.

[25]  Falk Bartels,et al.  GSOS for Probabilistic Transition Systems , 2002, CMCS.

[26]  Ana Sokolova,et al.  The Theory of Traces for Systems with Nondeterminism and Probability , 2018, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[27]  Prakash Panangaden,et al.  An Algebraic Theory of Markov Processes , 2018, LICS.

[28]  Thomas A. Henzinger,et al.  Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings , 2007, CSL.

[29]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[30]  Radha Jagadeesan,et al.  Approximating labelled Markov processes , 2003, Inf. Comput..

[31]  Roberto Segala,et al.  Axiomatizations for Probabilistic Bisimulation , 2001, ICALP.

[32]  Alexandre Goy,et al.  Combining probabilistic and non-deterministic choice via weak distributive laws , 2020, LICS.

[33]  Kim G. Larsen,et al.  Complete Axiomatization for the Total Variation Distance of Markov Chains , 2018, MFPS.

[34]  Alexander Katovsky,et al.  Category Theory , 2010, Arch. Formal Proofs.

[35]  Prakash Panangaden,et al.  Quantitative Algebraic Reasoning , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[36]  Matias David Lee,et al.  Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules , 2014, FoSSaCS.

[37]  James Worrell,et al.  Approximating a Behavioural Pseudometric without Discount for Probabilistic Systems , 2007, Log. Methods Comput. Sci..