Decidable First-Order Transition Logics for PA-Processes

We show decidability of several first-order logics based upon the reachability predicate in PA. The main tool we use is the recognizability by tree automata of the reachability relation between PA-processes. This approach and the transition logics we use allow a smooth and general treatment of parameterized model checking for PA. Then the logic is extended to handle a general notion of costs of PA-steps. In particular, when costs are Parikh images of traces, we show decidability of a transition logic extended by some form of first-order reasoning over costs.

[1]  E. Allen Emerson,et al.  Parametric quantitative temporal reasoning , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[2]  Rajeev Alur,et al.  Parametric temporal logic for “model measuring” , 2001, TOCL.

[3]  Philippe Schnoebelen,et al.  The regular viewpoint on PA-processes , 2002, Theor. Comput. Sci..

[4]  Didier Caucal On Word Rewriting Systems Having a Rational Derivation , 2000, FoSSaCS.

[5]  Jan A. Bergstra,et al.  Decidability of bisimulation equivalence for process generating context-free languages , 1987, JACM.

[6]  Sophie Tison,et al.  The theory of ground rewrite systems is decidable , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[7]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[8]  Richard Mayr Tableau Methods for PA-Processes , 1997, TABLEAUX.

[9]  Helmut Seidl,et al.  Synchronized Tree Languages Revisited and New Applications , 2001, FoSSaCS.

[10]  Jens Knoop,et al.  An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis , 1999, FoSSaCS.

[11]  Antonín Kucera,et al.  How to Parallelize Sequential Processes , 1997, CONCUR.

[12]  Richard Mayr Decidability of model checking with the temporal logic EF , 2001, Theor. Comput. Sci..

[13]  Mark Jerrum,et al.  Bisimulation Equivanlence Is Decidable for Normed Process Algebra , 1999 .

[14]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[15]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[16]  Ahmed Bouajjani,et al.  Verifying infinite state processes with sequential and parallel composition , 1995, POPL '95.

[17]  Faron Moller,et al.  Infinite Results , 1996, CONCUR.

[18]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[19]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[20]  Amir Pnueli,et al.  Symbolic model checking with rich assertional languages , 2001, Theor. Comput. Sci..

[21]  A. Bouajjani,et al.  On the verification problem of nonregular properties for nonregular processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[22]  Javier Esparza Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1995, FCT.

[23]  Antonín Kucera,et al.  Deciding bisimulation-like equivalences with finite-state processes , 2001, Theor. Comput. Sci..

[24]  Helmut Seidl Finite Tree Automata with Cost Functions , 1994, Theor. Comput. Sci..

[25]  Antonín Kucera,et al.  Regularity is Decidable for Normed PA Processes in Polynomial Time , 1996, FSTTCS.

[26]  Andreas Podelski,et al.  Efficient algorithms for pre* and post* on interprocedural parallel flow graphs , 2000, POPL '00.

[27]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[28]  Richard Mayr,et al.  Process rewrite systems , 1999, EXPRESS.