Ch. 3. Locally self-similar processes and their wavelet analysis

Publisher Summary At the organ or tissue level, where a part of the animal or plant is studied, there are often similar considerations. For example, a sample of leaves from a single plant may be subjected to experiment. Once again, the standard statistical techniques might be applied, with the leaf being the experimental unit. Animal or plant might be studied at its cellular level. Or an organism, such as a bacterium or yeast, may be worked with, which is unicellular; the study of the animal necessarily means observation of the cell. either a microscope or a flow cytometer is typically involved to take observations of a single cell,. This standard technique of flow cytometry is able to stage the cell's progression through its division cycle by effectively measuring the amount of DNA it currently has. It is possible to make the sort of observations on individual cells, which would draw the statistician into biology at the cellular level.

[1]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[2]  É. Moulines,et al.  Broadband log-periodogram regression of time series with long-range dependence , 1999 .

[3]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[4]  Murad S. Taqqu,et al.  Semi-parametric estimation of the long-range dependence parameter : A survey , 2003 .

[5]  A L Goldberger,et al.  Correlation approach to identify coding regions in DNA sequences. , 1994, Biophysical journal.

[6]  Peter Guttorp,et al.  Long-Memory Processes, the Allan Variance and Wavelets , 1994 .

[7]  A. Walden,et al.  Wavelet Analysis and Synthesis of Stationary Long-Memory Processes , 1996 .

[8]  Joseph E. Cavanaugh,et al.  Self-similarity index estimation via wavelets for locally self-similar processes , 2001 .

[9]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[10]  Leonard Topper,et al.  Turbulence : classic papers on statistical theory , 1961 .

[11]  Jeffrey M. Hausdorff,et al.  Fractals in physiological control: From heart beat to gait , 1995 .

[12]  Peter Hall,et al.  Periodogram-Based Estimators of Fractal Properties , 1995 .

[13]  Charles C. Taylor,et al.  Estimating the dimension of a fractal , 1991 .

[14]  A. Kolmogorov Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers , 1967, Uspekhi Fizicheskih Nauk.

[15]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[16]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[17]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[18]  Patrick Flandrin,et al.  From wavelets to time-scale energy distributions , 1992 .

[19]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[20]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[21]  J. R. Wallis,et al.  Computer Experiments With Fractional Gaussian Noises: Part 1, Averages and Variances , 1969 .

[22]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[23]  L. Schumaker,et al.  Recent advances in wavelet analysis , 1995 .

[24]  Fabienne Comte,et al.  SIMULATION AND ESTIMATION OF LONG MEMORY CONTINUOUS TIME MODELS , 1996 .

[25]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[26]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[27]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[28]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[29]  Jean-Marc Bardet,et al.  Wavelet Estimator of Long-Range Dependent Processes , 2000 .

[30]  P. Abry,et al.  The wavelet based synthesis for fractional Brownian motion , 1996 .

[31]  E. Csáki A relation between Chung's and Strassen's laws of the iterated logarithm , 1980 .

[32]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[33]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[34]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[35]  Patrice Abry,et al.  LETTER TO THE EDITOR The Wavelet-Based Synthesis for Fractional Brownian Motion Proposed by F. Sellan and Y. Meyer: Remarks and Fast Implementation , 1996 .

[36]  Yazhen Wang,et al.  Fractal Function Estimation via Wavelet Shrinkage , 1997 .

[37]  Praveen Kumar,et al.  Wavelets in Geophysics , 1994 .

[38]  C. Peng,et al.  Fractal landscapes and molecular evolution: modeling the myosin heavy chain gene family. , 1993, Biophysical journal.

[39]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[40]  P. Hall,et al.  Characterizing surface smoothness via estimation of effective fractal dimension , 1994 .

[41]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[42]  B. Turlach,et al.  Note on convergence rates of semiparametric estimators of dependence index , 1997 .

[43]  Walter Willinger,et al.  Self-similarity and heavy tails: structural modeling of network traffic , 1998 .

[44]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[45]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[46]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[47]  J. Kuelbs,et al.  Rates of clustering for some Gaussian self-similar processes , 1991 .

[48]  C. Tricot Curves and Fractal Dimension , 1994 .

[49]  J. R. Wallis,et al.  Computer Experiments with Fractional Gaussian Noises: Part 2, Rescaled Ranges and Spectra , 1969 .

[50]  H. Oodaira On Strassen's version of the law of the iterated logarithm for Gaussian processes , 1972 .

[51]  Yves Meyer,et al.  Progress in wavelet analysis and applications , 1993 .

[52]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[53]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[54]  Stéphane Mallat,et al.  Characterization of Self-Similar Multifractals with Wavelet Maxima , 1994 .

[55]  H. Rootzén,et al.  Small values of Gaussian processes and functional laws of the iterated logarithm , 1995 .