Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis

Photovoltaics and photocatalysis are two significant applications of clean and sustainable solar energy, albeit constrained by their inability to harvest the infrared spectrum of solar radiation. Lanthanide-doped materials are particularly promising in this regard, with tunable absorption in the infrared region and the ability to convert the long-wavelength excitation into shorter-wavelength light output through an upconversion process. In this review, we highlight the emerging applications of lanthanide-doped upconversion materials in the areas of photovoltaics and photocatalysis. We attempt to elucidate the fundamental physical principles that govern the energy conversion by the upconversion materials. In addition, we intend to draw attention to recent technologies in upconversion nanomaterials integrated with photovoltaic and photocatalytic devices. This review also provides a useful guide to materials synthesis and optoelectronic device fabrication based on lanthanide-doped upconversion materials.

[1]  Chuncheng Chen,et al.  Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. , 2008, Angewandte Chemie.

[2]  M. Grätzel Dye-sensitized solar cells , 2003 .

[3]  Tao Zhang,et al.  Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. , 2011, Chemical communications.

[4]  Fan Zhang,et al.  Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. , 2007, Angewandte Chemie.

[5]  Ru‐Shi Liu,et al.  The effect of surface coating on energy migration-mediated upconversion. , 2012, Journal of the American Chemical Society.

[6]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[7]  J. Paul Robinson,et al.  Tunable lifetime multiplexing using luminescent nanocrystals , 2013, Nature Photonics.

[8]  Jennifer K. Hensel,et al.  Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. , 2010, Nano letters.

[9]  C. H. Kam,et al.  Yellow-to-violet upconversion in neodymium oxide nanocrystal/titania/ormosil composite sol–gel thin films derived at low temperature , 2001 .

[10]  W. Cao,et al.  Investigation on upconversion photoluminescence of Bi3TiNbO9:Er3+:Yb3+ thin films , 2011 .

[11]  Jiangtian Li,et al.  PHOTOCATALYTIC GENERATION OF HYDROGEN WITH VISIBLE-LIGHT NITROGEN-DOPED LANTHANUM TITANIUM OXIDES , 2013 .

[12]  Jun Li,et al.  Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material , 2012 .

[13]  S. Chu,et al.  Investigation of Green Up‐Conversion Behavior in Y6W2O15:Yb3+,Er3+ Phosphor and its Verification in 973‐nm Laser‐Driven GaAs Solar Cell , 2012 .

[14]  W.G.J.H.M. van Sark,et al.  Towards upconversion for amorphous silicon solar cells , 2010 .

[15]  A. Shalav,et al.  Enhancing the Near-Infrared Spectral Response of Silicon Optoelectronic Devices via Up-Conversion , 2007, IEEE Transactions on Electron Devices.

[16]  Qing Peng,et al.  Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. , 2011, Accounts of chemical research.

[17]  Shuyan Song,et al.  Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging , 2013 .

[18]  Ting Yang,et al.  Interfacial Charge Carrier Dynamics in Core-Shell Au-CdS Nanocrystals , 2010 .

[19]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[20]  Peng Zhang,et al.  Enhancing multiphoton upconversion through energy clustering at sublattice level. , 2014, Nature materials.

[21]  H. Fu,et al.  Er3+ and Yb3+ co-doped TiO2−xFx up-conversion luminescence powder as a light scattering layer with enhanced performance in dye sensitized solar cells , 2013 .

[22]  A. Manivannan,et al.  Shape-enhanced photocatalytic activity of single-crystalline anatase TiO(2) (101) nanobelts. , 2010, Journal of the American Chemical Society.

[23]  Xiangdong Zhang,et al.  Investigation on solar photocatalytic degradation of various dyes in the presence of Er(3+):YAlO(3)/ZnO-TiO(2) composite. , 2010, Journal of environmental management.

[24]  Yongsheng Chen,et al.  β-NaYF4:Er3+(10%) microprisms for the enhancement of a-Si:H solar cell near-infrared responses , 2012 .

[25]  Yalin Lu,et al.  Enhancing near-infrared solar cell response using upconverting transparentceramics , 2011 .

[26]  J. Dawes,et al.  Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. , 2013, Nature nanotechnology.

[27]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[28]  Hans H Gorris,et al.  Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. , 2013, Angewandte Chemie.

[29]  Wei Guo,et al.  An upconversion NaYF4:Yb3+,Er3+/TiO2 core–shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells , 2013 .

[30]  X. Duan,et al.  Progress, Challenge and Perspective of Heterogeneous Photocatalysts , 2013 .

[31]  B. van der Ende,et al.  Lanthanide ions as spectral converters for solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[32]  Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells , 2012 .

[33]  Yuewei Zhang,et al.  Synthesis of lanthanide-doped NaYF₄@TiO₂ core-shell composites with highly crystalline and tunable TiO₂ shells under mild conditions and their upconversion-based photocatalysis. , 2013, Nanoscale.

[34]  Craig M. Johnson,et al.  Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals. , 2011, Optics letters.

[35]  Juan Wang,et al.  Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. , 2010, Angewandte Chemie.

[36]  Qiang Sun,et al.  Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. , 2013, Journal of the American Chemical Society.

[37]  R. Schropp,et al.  Increased Upconversion Response in a-Si:H Solar Cells With Broad-Band Light , 2013, IEEE Journal of Photovoltaics.

[38]  Yongsheng Liu,et al.  Lanthanide-Doped Luminescent Nanoprobes: Controlled Synthesis, Optical Spectroscopy, and Bioapplications , 2013 .

[39]  S. Uda,et al.  High Upconversion Intensity of Er3+ in a LaF3 Thin Film on CaF2 (111) Grown by the Molecular Beam Epitaxy Method , 1997 .

[40]  Z. Lou,et al.  Near-infrared photocatalyst of Er3+/Yb3+ codoped (CaF2@TiO2) nanoparticles with active-core/active-shell structure , 2013 .

[41]  Tze Chien Sum,et al.  Photon Upconversion in Hetero‐nanostructured Photoanodes for Enhanced Near‐Infrared Light Harvesting , 2013, Advanced materials.

[42]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[43]  Ning Liu,et al.  Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. , 2011, Chemical communications.

[44]  Botao Wu,et al.  Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod. , 2013, Nano letters.

[45]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[46]  Jun Wang,et al.  Preparation of novel nanometer TiO2 catalyst doped with upconversion luminescence agent and investigation on degradation of acid red B dye using visible light , 2007 .

[47]  Hai Zhu,et al.  Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. , 2013, ACS nano.

[48]  Jianhua Hao,et al.  Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. , 2011, Angewandte Chemie.

[49]  Chunhua Lu,et al.  Different upconversion properties of β-NaYF4:Yb3+,Tm3+/Er3+ in affecting the near-infrared-driven photocatalytic activity of high-reactive TiO2. , 2014, ACS applied materials & interfaces.

[50]  P. Ramasamy,et al.  Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells. , 2014, Chemical communications.

[51]  Wei Liu,et al.  Highly Uniform, Bifunctional Core/Double‐Shell‐Structured β‐NaYF4:Er3+, Yb3+ @ SiO2@TiO2 Hexagonal Sub‐microprisms for High‐Performance Dye Sensitized Solar Cells , 2013, Advanced materials.

[52]  Lei Wang,et al.  Degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent. , 2006, Journal of environmental sciences.

[53]  Mingdong Huang,et al.  Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. , 2012, Journal of the American Chemical Society.

[54]  Shu-Hao Chang,et al.  Upconversion effects on the performance of near-infrared laser-driven polymer photovoltaic devices , 2012 .

[55]  G. Dingemans,et al.  Er3+ and Si luminescence of atomic layer deposited Er-doped Al2O3 thin films on Si(100) , 2011 .

[56]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[57]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[58]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[59]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[60]  Yongsheng Zhu,et al.  Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. , 2013, Optics letters.

[61]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[62]  W. Qin,et al.  Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites. , 2014, Dalton transactions.

[63]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[64]  Jun Lin,et al.  Growth and optical properties of nanocrystalline Gd3Ga5O12:Ln (Ln=Eu3+,Tb3+,Er3+) powders and thin films via Pechini sol–gel process , 2005 .

[65]  Wei Huang,et al.  Enhancing Solar Cell Efficiency: The Search for Luminescent Materials as Spectral Converters , 2013 .

[66]  Dan Zhao,et al.  Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles. , 2010, Chemical communications.

[67]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[68]  G. Ciamician,et al.  THE PHOTOCHEMISTRY OF THE FUTURE. , 1912, Science.

[69]  R. Yang,et al.  NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles , 2013 .

[70]  Suwen Liu,et al.  Visible Light Photocatalytic Activities of TiO2 Nanocrystals Doped with Upconversion Luminescence Agent , 2008 .

[71]  Defa Wang,et al.  Tuning the Charge-Transfer Property of PbS-Quantum Dot/TiO2-Nanobelt Nanohybrids via Quantum Confinement , 2010 .

[72]  Yongsheng Liu,et al.  Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. , 2013, Chemical Society reviews.

[73]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[74]  J. Silver,et al.  The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium Co-doped Yttrium Oxide Phosphors , 2001 .

[75]  Zhuang Liu,et al.  Upconversion nanophosphors for small-animal imaging. , 2012, Chemical Society reviews.

[76]  Helmut Schäfer,et al.  Upconverting nanoparticles. , 2011, Angewandte Chemie.

[77]  Hao Ming Chen,et al.  Plasmon-enhanced near-infrared-active materials in photoelectrochemical water splitting. , 2013, Chemical communications.

[78]  Michael Grätzel,et al.  Influence of plasmonic Au nanoparticles on the photoactivity of Fe₂O₃ electrodes for water splitting. , 2011, Nano letters.

[79]  I. R. Martín,et al.  Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm , 2013 .

[80]  S. M. Huang,et al.  Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells , 2012, Nanotechnology.

[81]  Jin Zhai,et al.  Hierarchically ordered macro-mesoporous TiO₂-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. , 2011, ACS nano.

[82]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[83]  J. G. Solé,et al.  Luminescence of Er-doped silicon oxide–zirconia thin films , 2009 .

[84]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[85]  W.G.J.H.M. van Sark,et al.  Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors , 2010 .

[86]  Z. Yin,et al.  Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. , 2013, Small.

[87]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[88]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[89]  I. Smalyukh,et al.  Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. , 2014, Nano letters.

[90]  D. Cahen,et al.  Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters , 1976, Nature.

[91]  Xiaogang Liu,et al.  Photonics: Upconversion goes broadband. , 2012, Nature materials.

[92]  D. Jaque,et al.  Photoluminescence of Er-doped Si-SiO2 and Al–Si-SiO2 sputtered thin films , 2008 .

[93]  W. Liu,et al.  Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles. , 2014, Nanoscale.

[94]  T. Gregorkiewicz,et al.  Silicon quantum dots: surface matters , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[95]  Angelo Albini,et al.  Photocatalysis for the formation of the C-C bond. , 2007, Chemical reviews.

[96]  Xiao Hu,et al.  Preparation and optical properties of sol–gel neodymium-doped germania/γ-glycidoxypropyltrimethoxysilane organic–inorganic hybrid thin films , 2006 .

[97]  Dunwei Wang,et al.  Improving Hematite's Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. , 2012, The journal of physical chemistry letters.

[98]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[99]  Xing-Zhong Zhao,et al.  Double-shell β-NaYF4:Yb3+, Er3+/SiO2/TiO2 submicroplates as a scattering and upconverting layer for efficient dye-sensitized solar cells. , 2013, Chemical communications.

[100]  C. Brabec,et al.  Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications , 2011, Advanced materials.

[101]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[102]  Reshef Tenne,et al.  A light-variation insensitive high efficiency solar cell , 1987, Nature.

[103]  Y. Liu,et al.  Effect of the growth conditions on infrared upconversion efficiency of CaS: Eu, Sm thin films , 2001 .

[104]  Xiangdong Zhang,et al.  Investigation on photocatalytic degradation of ethyl violet dyestuff using visible light in the presence of ordinary rutile TiO2 catalyst doped with upconversion luminescence agent. , 2006, Water research.

[105]  H. Fu,et al.  NaYF4:Er3+/Yb3+–graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells , 2012 .

[106]  Huaidong Jiang,et al.  A Bi2WO6‐Based Hybrid Photocatalyst with Broad Spectrum Photocatalytic Properties under UV, Visible, and Near‐Infrared Irradiation , 2013, Advanced materials.

[107]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[108]  Ping Huang,et al.  Lanthanide-doped LiLuF(4) upconversion nanoprobes for the detection of disease biomarkers. , 2014, Angewandte Chemie.

[109]  D. M. Bubb,et al.  Nonlinear optical characterization of LaEr(MoO4)3 thin films using the Z -scan technique , 2007 .

[110]  G. Demopoulos,et al.  Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF₄:Er³⁺/Yb³⁺ nanoplatelets. , 2011, ACS applied materials & interfaces.

[111]  Jun Lin,et al.  Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. , 2014, Chemical reviews.

[112]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[113]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[114]  Jian Zhu,et al.  NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst , 2010 .

[115]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[116]  Jinhua Ye,et al.  Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. , 2012, Chemistry.