Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation

The effects of strain and hydrogenation on the electronic, magnetic, and optical properties of monolayers of Ta based dichalcogenides (TaX2; X = S, Se, and Te) are investigated using density-functional theory. We predict a complex scenario of strain-dependent magnetic phase transitions involving paramagnetic, ferromagnetic, and modulated antiferromagnetic states. Covering one of the two chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic TaX2 monolayers to a semiconductor, and the optical behavior strongly depends on strain and hydrogenation. Our research opens pathways towards the manipulation of magnetic as well as optical properties for future spintronics and optoelectronics applications.

[1]  Yi Xie,et al.  Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. , 2013, Chemical Society reviews.

[2]  Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain , 2014, 1403.3172.

[3]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[4]  Y. K. Lim,et al.  Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study , 2012 .

[5]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[6]  Xin Sun,et al.  Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. , 2012, ACS nano.

[7]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[8]  H. Pan Electronic and Magnetic Properties of Vanadium Dichalcogenides Monolayers Tuned by Hydrogenation , 2014 .

[9]  Yingtao Zhu,et al.  Evidence of the existence of magnetism in pristine VX₂ monolayers (X = S, Se) and their strain-induced tunable magnetic properties. , 2012, ACS nano.

[10]  Richard G. Hennig,et al.  Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts , 2013 .

[11]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[12]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[13]  M. Fox Optical Properties of Solids , 2010 .

[14]  D. Xue,et al.  Tunable ferromagnetic ordering in MoS₂ nanosheets with fluorine adsorption. , 2015, Nanoscale.

[15]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[16]  R. Skomski,et al.  Effective mass and band gap of strained graphene , 2014 .

[17]  N. M. R. Peres,et al.  Tight-binding approach to uniaxial strain in graphene , 2008, 0811.4396.

[18]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  V. Shenoy,et al.  Tunable dielectric properties of transition metal dichalcogenides. , 2011, ACS nano.

[21]  Xiaobo Du,et al.  Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain , 2014 .

[22]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[23]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[24]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[25]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[26]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[27]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[28]  Ralph Skomski,et al.  Simple models of magnetism , 2008 .

[29]  B. Yakobson,et al.  Strong ferromagnetism in hydrogenated monolayer MoS2tuned by strain , 2013 .

[30]  Zhengzheng Shao,et al.  Mechanical and electronic properties of monolayer MoS2 under elastic strain , 2012 .

[31]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[32]  Wanlin Guo,et al.  Tensile strain induced switching of magnetic states in NbSe2 and NbS2 single layers. , 2014, Nanoscale.

[33]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[34]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[35]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[36]  Tomás Palacios,et al.  Graphene electronics: thinking outside the silicon box. , 2011, Nature nanotechnology.

[37]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[38]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[39]  Hui Pan Metal Dichalcogenides Monolayers: Novel Catalysts for Electrochemical Hydrogen Production , 2014, Scientific Reports.

[40]  T. Heine Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. , 2015, Accounts of chemical research.

[41]  Xiaotao Zu,et al.  Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. , 2013, Physical chemistry chemical physics : PCCP.

[42]  B. Geng,et al.  Versatile Electronic and Magnetic Properties of SnSe2 Nanostructures Induced by the Strain , 2014 .

[43]  H. Pan Magnetic and Electronic Evolutions of Hydrogenated VTe2 Monolayer under Tension , 2014, Scientific Reports.

[44]  T. Frauenheim,et al.  Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. , 2012, The journal of physical chemistry letters.

[45]  Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. , 2013, Nature communications.