Nanotechnology for sustainable energy

[1]  L. Kong,et al.  Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method , 2008 .

[2]  K. S. Dhathathreyan,et al.  Nano titanium oxide catalyst support for proton exchange membrane fuel cells , 2008 .

[3]  A. Virkar,et al.  Composite Nafion Membranes Containing Nanosize TiO2 ∕ SnO2 for Proton Exchange Membrane Fuel Cells , 2008 .

[4]  L. Carvalho,et al.  Nanostructured membranes based on sulfonated poly(aryl ether sulfone) and silica for fuel‐cell applications , 2008 .

[5]  J. Jang,et al.  Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation , 2008 .

[6]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[7]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[8]  Naijuan Wu,et al.  Nanostructured thin solid oxide fuel cells with high power density. , 2008, Dalton Transactions.

[9]  M Stanley Whittingham,et al.  Inorganic nanomaterials for batteries. , 2008, Dalton transactions.

[10]  M. S. Akhtar,et al.  Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water , 2008 .

[11]  P. J. Sebastian,et al.  Synthesis and characterization of nanostructured semiconductors for photovoltaic and photoelectrochemical cell applications , 2008, Optics + Photonics for Sustainable Energy.

[12]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[13]  Jin-Ri Choi,et al.  Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS , 2008 .

[14]  V. Obreja,et al.  On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review , 2008 .

[15]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[16]  D. Sheppard,et al.  Hydrogen adsorption on porous silica , 2008 .

[17]  A. Melezhyk,et al.  Carbon nanofibers as hydrogen adsorbing materials for power sources , 2008 .

[18]  J. Ying,et al.  Synthesis and Catalytic Applications of Self‐Assembled Carbon Nanofoams , 2008 .

[19]  Jang-Hoon Ha,et al.  Hydrogen storage characteristics of metal oxide doped Al–MCM-41 mesoporous materials , 2007 .

[20]  Dominique Massiot,et al.  Causes of supercapacitors ageing in organic electrolyte , 2007 .

[21]  A. J. Frank,et al.  Size and shape control of nanocrystallites in mesoporous TiO2 films , 2007 .

[22]  Liyuan Han,et al.  Photoinduced electron injection in black dye sensitized nanocrystalline TiO2 films , 2007 .

[23]  Isabelle Rodriguez,et al.  Solar energy harvesting in photoelectrochemical solar cells , 2007 .

[24]  Hong‐Cai Zhou,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[25]  Byung-Joo Kim,et al.  Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons. , 2007, Journal of colloid and interface science.

[26]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[27]  K. Jeng,et al.  Noble metal fuel cell catalysts with nano-network structures , 2007 .

[28]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[29]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[30]  J. García‐Martínez,et al.  Ordered circular mesoporosity induced by phospholipids , 2007 .

[31]  Yi Cui,et al.  Fast, completely reversible li insertion in vanadium pentoxide nanoribbons. , 2007, Nano letters.

[32]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[33]  A. Corma,et al.  Apollony photonic sponge based photoelectrochemical solar cells. , 2007, Chemical communications.

[34]  E. Mamontov,et al.  Dynamics of ammonia borane using neutron scattering , 2006 .

[35]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[36]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[37]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[38]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[39]  Teresa J. Bandosz,et al.  Activated Carbon Surfaces in Environmental Remediation , 2006 .

[40]  A. Corma,et al.  Photonic crystals for applications in photoelectrochemical processes: Photoelectrochemical solar cells with inverse opal topology , 2005 .

[41]  T. Veziroglu,et al.  Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts , 2005 .

[42]  S. A. Sherif,et al.  Wind energy and the hydrogen economy—review of the technology , 2005 .

[43]  K. Kobayakawa,et al.  Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea , 2005 .

[44]  N. Wu,et al.  Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution , 2004 .

[45]  Z. Yamani,et al.  Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals , 2004 .

[46]  M. Hoffmann,et al.  Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination , 2004 .

[47]  G. Han,et al.  Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study , 2004 .

[48]  Xiuwen Han,et al.  A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide , 2004 .

[49]  Y. Nakato,et al.  A nano-modified Si/TiO2 composite electrode for efficient solar water splitting , 2004 .

[50]  Z. Yamani,et al.  Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3 , 2004 .

[51]  M. Anpo Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV—Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light , 2004 .

[52]  N. M. Iha,et al.  Metal complex sensitizers in dye-sensitized solar cells , 2004 .

[53]  C. Bignozzi,et al.  Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors , 2004 .

[54]  V. Murugesan,et al.  Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. , 2004, Water research.

[55]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[56]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[57]  R. S. Singh,et al.  Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications , 2004 .

[58]  Claes-Göran Granqvist,et al.  Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation , 2004 .

[59]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[60]  V. Rangari,et al.  Characteristics of nanocrystalline CdS films fabricated by sonochemical, microwave and solution growth methods for solar cell applications , 2004 .

[61]  F. Shiraishi,et al.  Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide , 2004 .

[62]  Robert C. Haddon,et al.  Proton exchange membrane fuel cells with carbon nanotube based electrodes , 2004 .

[63]  R. Marcilla,et al.  Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes , 2004 .

[64]  J. Wu,et al.  Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction , 2004 .

[65]  S. Woo,et al.  Bimetallic Pt–Ru nanowire network for anode material in a direct-methanol fuel cell , 2003 .

[66]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[67]  M. Tazawa,et al.  Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity , 2003 .

[68]  John R. Owen,et al.  A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes , 2003 .

[69]  M. Anpo,et al.  Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 , 2003 .

[70]  M. Shaijumon,et al.  Synthesis of carbon nanotubes by pyrolysis of acetylene using alloy hydride materials as catalysts and their hydrogen adsorption studies , 2003 .

[71]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[72]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[73]  M. Anpo,et al.  Application of ion beams for preparation of TiO2 thin film photocatalysts operatable under visible light irradiation: Ion-assisted deposition and metal ion-implantation , 2003 .

[74]  Hongwei Zhu,et al.  Electrochemical hydrogen storage of aligned multiwalled carbon nanotubes , 2003 .

[75]  K. S. Dhathathreyan,et al.  Hydrogen storage in carbon nanotubes and related materials , 2003 .

[76]  A. Horváth,et al.  Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface , 2003 .

[77]  W. Choi,et al.  Dual Photocatalytic Pathways of Trichloroacetate Degradation on TiO2: Effects of Nanosized Platinum Deposits on Kinetics and Mechanism , 2002 .

[78]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[79]  Diego Cazorla-Amorós,et al.  Hydrogen Storage in Activated Carbons and Activated Carbon Fibers , 2002 .

[80]  H. Arakawa,et al.  Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation , 2002 .

[81]  De-hai Wu,et al.  Oxidation and Opening of Well-Aligned Carbon Nanotube Tips , 2002 .

[82]  M. Jaroniec,et al.  High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method , 2002 .

[83]  Hironori Arakawa,et al.  A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis , 2002 .

[84]  H. Yamashita,et al.  Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts , 2002 .

[85]  A. Xu,et al.  The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles , 2002 .

[86]  M. Mazúr,et al.  Investigations of metal-doped titanium dioxide photocatalysts , 2002 .

[87]  P. Kamat,et al.  Metal–metal and metal–semiconductor composite nanoclusters , 2002 .

[88]  A. Koca,et al.  Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution , 2002 .

[89]  R. Gilliam Revisiting the Winning of the West , 2002 .

[90]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[91]  H. Arakawa,et al.  The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+ , 2001 .

[92]  G. Pan,et al.  Electrochemical Hydrogen Storage by Carbon Nanotubes Decorated with Metallic Nickel , 2001 .

[93]  M. Jaroniec,et al.  Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. , 2001, Journal of the American Chemical Society.

[94]  K. Domen,et al.  A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator , 2001 .

[95]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[96]  S. Anandan,et al.  Dye sensitized hydrogen evolution from water , 2001 .

[97]  S. M. Attia,et al.  Morphological Effects on the Electrical and Electrochemical Properties of Carbon Aerogels , 2001 .

[98]  F. Béguin,et al.  Enhancement of Reversible Hydrogen Capacity into Activated Carbon through Water Electrolysis , 2001 .

[99]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[100]  Gary G. Tibbetts,et al.  Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials , 2000 .

[101]  Natarajan Rajalakshmi,et al.  Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage , 2000 .

[102]  K. Domen,et al.  Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides , 2000 .

[103]  J. Mcclure,et al.  Charge transport mechanism in a typical Au/CdTe Schottky diode , 2000 .

[104]  K. Domen,et al.  Mechano-catalytic overall water splitting on some oxides (II) , 2000 .

[105]  M. Anpo,et al.  Photocatalytic decomposition of NO under visible light irradiation on the Cr‐ion‐implanted TiO2 thin film photocatalyst , 2000 .

[106]  K. Gurunathan Photobiocatalytic production of hydrogen using sensitized TiO2–MV2+ system coupled Rhodopseudomonas capsulata , 2000 .

[107]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[108]  Asok K. Jana,et al.  Solar cells based on dyes , 2000 .

[109]  H. Arakawa,et al.  Solar hydrogen production. Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts , 2000 .

[110]  P. Parilla,et al.  A Simple and Complete Purification of Single‐Walled Carbon Nanotube Materials , 1999 .

[111]  Marta I. Litter,et al.  Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems , 1999 .

[112]  Peter C. Eklund,et al.  Hydrogen Adsorption in Carbon Materials , 1999 .

[113]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[114]  R. Schulz,et al.  Recent developments in the applications of nanocrystalline materials to hydrogen technologies , 1999 .

[115]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[116]  K. Domen,et al.  Photocatalytic activity and reaction mechanism of Pt-intercalated K4Nb6O17 catalyst on the water splitting in carbonate salt aqueous solution , 1998 .

[117]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[118]  K. Domen,et al.  Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A = K, Rb) , 1996 .

[119]  Hironori Arakawa,et al.  Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst , 1996 .

[120]  Robert F. Savinell,et al.  Real‐Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell , 1995 .

[121]  D. G. Howell,et al.  The future of energy gases , 1995 .

[122]  H. Arakawa,et al.  Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis , 1994 .

[123]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[124]  R. T. Ross,et al.  Efficiency of hot-carrier solar energy converters , 1982 .

[125]  Yong Wang,et al.  Novel catalyst support materials for PEM fuel cells : current status and future prospects , 2009 .

[126]  J. García‐Martínez,et al.  Incorporation of Pd nanoparticles in mesostructured silica , 2009 .

[127]  Hongjie Dai,et al.  Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds. , 2008, Nano letters.

[128]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[129]  J. Kang,et al.  Hydrogen Adsortion in Periodic Mesoporous Organic– and Inorganic–Silica Materials at Room Temperature , 2006 .

[130]  F. Béguin,et al.  Chapter 6 Application of nanotextured carbons for supercapacitors and hydrogen storage , 2006 .

[131]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[132]  T. Kyotani,et al.  Template synthesis of novel porous carbons using various types of zeolites , 2003 .

[133]  J. Tu,et al.  Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior , 2003 .

[134]  Hui‐Ming Cheng,et al.  Electrochenucal study of hydrogen storage mechanism of carbon nanotubes , 2002 .

[135]  H. Arakawa,et al.  Oxide semiconductor materials for solar light energy utilization , 2000 .

[136]  J. A. Schwarz,et al.  Hydrogen storage systems , 1993 .

[137]  T. Kyotani,et al.  Formation of graphite thin film from polyfurfuryl alcohol and polyvinyl acetate carbons prepared between the lamellae of montmorillonite , 1991 .

[138]  T. Kyotani,et al.  Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae , 1988, Nature.

[139]  C. Carpetis,et al.  A study on hydrogen storage by use of cryoadsorbents , 1980 .