Quantum superintegrable systems with quadratic integrals on a two dimensional manifold

There are two classes of quantum integrable systems on a manifold with quadratic integrals, the Liouville and the Lie integrable systems, as it happens in the classical case. The quantum Liouville quadratic integrable systems are defined on a Liouville manifold and the Schrodinger equation can be solved by separation of variables in one coordinate system. The Lie integrable systems are defined on a Lie manifold and are not generally separable ones but can be solved. Therefore, there are superintegrable systems with two quadratic integrals of motion not necessarily separable in two coordinate systems. The quantum analogs of the two dimensional superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quan...

[1]  J. Kress Equivalence of superintegrable systems in two dimensions , 2007 .

[2]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .

[3]  W. Miller,et al.  Exact and quasiexact solvability of second-order superintegrable quantum systems: I. Euclidean space preliminaries , 2006 .

[4]  C. Daskaloyannis,et al.  Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold , 2004, math-ph/0412055.

[5]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory , 2005 .

[6]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform , 2005 .

[7]  P. Winternitz,et al.  Subgroup Type Coordinates and the Separation of Variables in Hamilton-Jacobi and Schrödinger Equations , 2004, math-ph/0405063.

[8]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[9]  P. Winternitz,et al.  Integrable and superintegrable quantum systems in a magnetic field , 2003, math-ph/0311051.

[10]  W. Miller,et al.  Superintegrable systems in Darboux spaces , 2003, math-ph/0307039.

[11]  S. Gravel,et al.  Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.

[12]  W. Miller,et al.  Complete sets of invariants for dynamical systems that admit a separation of variables , 2002 .

[13]  C. Daskaloyannis Polynomial associative algebras of quantum superintegrable systems , 2002 .

[14]  W. Miller,et al.  Completeness of multiseparable superintegrability in two dimensions , 2002 .

[15]  Jonathan M. Kress,et al.  Multiseparability and superintegrability in three dimensions , 2002 .

[16]  P. Winternitz,et al.  Separation of variables and subgroup bases on n-dimensional hyperboloids , 2002 .

[17]  P. Winternitz,et al.  Superintegrability in a two-dimensional space of nonconstant curvature , 2001, math-ph/0108015.

[18]  W. Miller,et al.  Completeness of superintegrability in two-dimensional constant-curvature spaces , 2001, math-ph/0102006.

[19]  C. Daskaloyannis Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems , 2000, math-ph/0003017.

[20]  C. Daskaloyannis Polynomial poisson algebras for two-dimensional classical superintegrable systems and polynomial associative algebras for quantum superintegrable systems , 2000 .

[21]  W. Miller,et al.  Completeness of multiseparable superintegrability on the complex 2-sphere , 2000 .

[22]  A. Tsyganov Degenerate integrable systems on the plane with a cubic integral of motion , 2000 .

[23]  W. Miller,et al.  Completeness of multiseparable superintegrability in E2,C , 2000 .

[24]  A. Tsiganov The Drach superintegrable systems , 2000, nlin/0001053.

[25]  M. F. Rañada,et al.  Superintegrable systems on the two-dimensional sphere S2 and the hyperbolic plane H2 , 1999 .

[26]  W. Miller,et al.  Superintegrability on the two-dimensional hyperboloid. II , 1997, quant-ph/9907037.

[27]  C. Grosche,et al.  Path-integral approach for superintegrable potentials on the three-dimensional hyperboloid , 1997 .

[28]  M. F. Ranada Superintegrable n=2 systems, quadratic constants of motion, and potentials of Drach , 1997 .

[29]  P. Winternitz,et al.  Contractions of Lie Algebras and Separation of Variables.. Two-Dimensional Hyperboloid , 1997 .

[30]  W. Miller,et al.  Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions , 1996 .

[31]  L. Vinet,et al.  Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .

[32]  C. Grosche,et al.  Path Integral Discussion for Smorodinsky‐Winternitz Potentials: II. The Two‐ and Three‐Dimensional Sphere , 1995 .

[33]  C. Grosche,et al.  Path Integral Discussion for Smorodinsky‐Winternitz Potentials: I. Two‐ and Three Dimensional Euclidean Space , 1994 .

[34]  K. Kokkotas,et al.  Deformed oscillator algebras for two-dimensional quantum superintegrable systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[35]  Bonatsos,et al.  Quantum-algebraic description of quantum superintegrable systems in two dimensions. , 1993, Physical Review A. Atomic, Molecular, and Optical Physics.

[36]  A. Zhedanov Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials , 1993 .

[37]  A. Zhedanov,et al.  Mutual integrability, quadratic algebras, and dynamical symmetry , 1992 .

[38]  C. Daskaloyannis,et al.  Generalized deformed oscillator and nonlinear algebras , 1991 .

[39]  Jarmo Hietarinta,et al.  Direct methods for the search of the second invariant , 1987 .

[40]  B. Kupershmidt,et al.  Superintegrable systems. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[42]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[43]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .