A comparative study on gold and platinum dissolution in acidic and alkaline media

Electrochemical dissolution of gold and platinum in 0.1 M HClO4, 0.1 M H2SO4, and 0.05 M NaOH is investigated. The qualitative picture of both metals' dissolution is pH-independent. Oxidation/reduction of the metal's surface leads to the transient dissolution peaks which we label A1 and C1 on the dissolution profiles. Commencement of the oxygen evolution reaction (OER) results in the additional dissolution peak A2. Quantitatively, there are important differences. The amount of gold transiently dissolved in alkaline medium is more than an order of magnitude higher in comparison to that in acidic medium. Oppositely, steady-state gold dissolution in base in the potential region of OER is hindered. The transient dissolution of platinum is by a factor of two higher in base. It is suggested that variation of the pH does not change the mechanism of the OER on platinum. Consequently, the dissolution rate of platinum is equal in acidic and alkaline electrolytes. As an explanation of the observed difference in gold dissolution, a difference in the thickness of compact oxide formed in acid and base is suggested. Growth of a thicker compact oxide in the alkaline medium explains the increased transient and the decreased steady-state dissolution of gold.

[1]  Thomas F. Fuller,et al.  PEM Fuel Cell Pt ∕ C Dissolution and Deposition in Nafion Electrolyte , 2007 .

[2]  A. Arvia,et al.  Changes in the electrochemical response of noble metals produced by square-wave potential perturbations , 1983 .

[3]  Yan-Jie Wang,et al.  Alkaline polymer electrolyte membranes for fuel cell applications. , 2013, Chemical Society reviews.

[4]  Ken-ichiro Ota,et al.  Dissolution of platinum in acidic media , 2008 .

[5]  Mallika Gummalla,et al.  Systematic Study on the Impact of Pt Particle Size and Operating Conditions on PEMFC Cathode Catalyst Durability , 2011 .

[6]  A. Arvia,et al.  Electrochemical preparation and characteristics of platinum electrode surfaces with preferred orientations , 1985 .

[7]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[8]  E. Ticianelli,et al.  Identical-Location Transmission Electron Microscopy Study of Pt/C and Pt–Co/C Nanostructured Electrocatalyst Aging: Effects of Morphological and Compositional Changes on the Oxygen Reduction Reaction Activity , 2013, Electrocatalysis.

[9]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[10]  A. Damjanović,et al.  Electron Transfer Through Thin Anodic Oxide Films during the Oxygen Evolution Reactions at Pt Electrodes I . Acid Solutions , 1991 .

[11]  Aleksandar R. Zeradjanin,et al.  Effect of Temperature on Gold Dissolution in Acidic Media , 2014 .

[12]  Steven G. Rinaldo,et al.  Model- and Theory-Based Evaluation of Pt Dissolution for Supported Pt Nanoparticle Distributions under Potential Cycling , 2011 .

[13]  Steven G. Bratsch,et al.  Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K , 1989 .

[14]  A. Arvia,et al.  Scanning electron microscopy and voltammetry of preferentially oriented polycrystalline platinum surfaces , 1985 .

[15]  Steven G. Rinaldo,et al.  Physical Theory of Platinum Nanoparticle Dissolution in Polymer Electrolyte Fuel Cells , 2010 .

[16]  F. Calle‐Vallejo,et al.  Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism , 2013 .

[17]  C. Stampfl,et al.  Properties of the gold oxides Au 2 O 3 and Au 2 O : First-principles investigation , 2007 .

[18]  Sergio Trasatti,et al.  Electrocatalysis: understanding the success of DSA® , 2000 .

[19]  Ioannis Katsounaros,et al.  Oxygen electrochemistry as a cornerstone for sustainable energy conversion. , 2014, Angewandte Chemie.

[20]  Vat Dam,et al.  The Stability of PEMFC Electrodes Platinum Dissolution vs Potential and Temperature Investigated by Quartz Crystal Microbalance , 2007 .

[21]  J. Hoare Oxygen overvoltage on bright gold—I☆ , 1966 .

[22]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[23]  A. Wiȩckowski,et al.  Radioactive-labeling study of sulfate/bisulfate adsorption on smooth gold electrodes , 1990 .

[24]  A. Nishikata,et al.  Dissolution Mechanism of Platinum in Sulfuric Acid Solution , 2012 .

[25]  Aleksandar R. Zeradjanin,et al.  Towards a comprehensive understanding of platinum dissolution in acidic media , 2014 .

[26]  S. Barnartt The Oxygen‐Evolution Reaction at Gold Anodes I . Accuracy of Overpotential Measurements , 1959 .

[27]  Jürgen Stumper,et al.  Nonmonotonic dynamics in Lifshitz-Slyozov-Wagner theory: Ostwald ripening in nanoparticle catalysts. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[29]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[30]  Aleksandar R. Zeradjanin,et al.  Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. , 2012, Physical chemistry chemical physics : PCCP.

[31]  G. Ceder,et al.  Electrochemical stability of nanometer-scale Pt particles in acidic environments. , 2010, Journal of the American Chemical Society.

[32]  B. Conway,et al.  Nanogravimetry study of the initial stages of anodic surface oxide film growth at Au in aqueous HClO4 and H2SO4 by means of EQCN , 2003 .

[33]  L. J. Bregoli,et al.  A Reverse-Current Decay Mechanism for Fuel Cells , 2005 .

[34]  F. de Bruijn,et al.  Review: Durability and Degradation Issues of PEM Fuel Cell Components , 2008 .

[35]  G. Láng,et al.  RRDE experiments with potential scans at the ring and disk electrodes , 2011 .

[36]  V. S. Bagotzky,et al.  Corrosion of platinum catalyst in alkaline solutions , 1982 .

[37]  F. Maillard,et al.  An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere , 2013 .

[38]  W. Cooper Advances and future prospects in copper electrowinning , 1985 .

[39]  Aleksandar R. Zeradjanin,et al.  Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte , 2014, Electrocatalysis.

[40]  G. Jerkiewicz,et al.  Roughening and long-range nanopatterning of Au(111) through potential cycling in aqueous acidic media. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[41]  Liyan Xing,et al.  Ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the study of Pt electro-dissolution. , 2013, Analytica chimica acta.

[42]  K. Juodkazis XPS studies on the gold oxide surface layer formation , 2000 .

[43]  S. Cadle,et al.  Ring-disk electrode study of the anodic behavior of gold in 0.2M sulfuric acid , 1974 .

[44]  M. Matsumoto,et al.  Oxygen-Enhanced Dissolution of Platinum in Acidic Electrochemical Environments , 2011 .

[45]  G. Senter A general discussion on the passivity of metals , 1914 .

[46]  Á. Kriston,et al.  Temperature dependence of two types of dissolution of platinum in acid media. An electrochemical nanogravimetric study , 2010 .

[47]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[48]  Atsushi Nishikata,et al.  Effects of pH on Dissolution and Surface Area Loss of Platinum Due to Potential Cycling , 2012 .

[49]  Yuyan Shao,et al.  Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective , 2012 .

[50]  R. P. Frankenthal,et al.  The Anodic Behavior of Gold in Sulfuric Acid Solutions Effect of Chloride and Electrode Potential , 1976 .

[51]  P. Stonehart,et al.  Potential cycling effects on platinum electrocatalyst surfaces , 1973 .

[52]  Aleksandar R. Zeradjanin,et al.  Dissolution of Noble Metals during Oxygen Evolution in Acidic Media , 2014 .

[53]  Xiaohong Li,et al.  Prospects for alkaline zero gap water electrolysers for hydrogen production , 2011 .

[54]  Thomas F. Fuller,et al.  Temperature Effects on PEM Fuel Cells Pt ∕ C Catalyst Degradation , 2008 .

[55]  V. V. Losev,et al.  Relationship between corrosion processes and oxygen evolution on anodes made from noble metals and related metal oxide anodes , 1988 .

[56]  M. Lohrengel,et al.  Electrochemical properties of anodic gold oxide layers—I: Potentiostatic oxide growth and double layer capacity , 1976 .

[57]  Z. Jusys,et al.  ELECTROCHEMICAL QUARTZ CRYSTAL MICROGRAVIMETRY OF GOLD IN PERCHLORIC AND SULFURIC ACID SOLUTIONS , 1999 .

[58]  Aleksandar R. Zeradjanin,et al.  The impact of dissolved reactive gases on platinum dissolution in acidic media , 2014 .

[59]  R. Caudano,et al.  Electron spectroscopic characterization of oxygen adsorption on gold surfaces: II. Production of gold oxide in oxygen DC reactive sputtering , 1984 .

[60]  K. Ota,et al.  Dissolution of platinum anodes in sulfuric acid solution , 1988 .

[61]  K. Mayrhofer,et al.  Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion?** , 2012, Angewandte Chemie.

[62]  A. Arvia,et al.  Changes in the polycrystalline gold electrode surface produced by square wave potential perturbations , 1984 .

[63]  F. de Bruijn,et al.  Determination of the Potentiostatic Stability of PEMFC Electro Catalysts at Elevated Temperatures , 2009 .

[64]  Paul F. Duby,et al.  The history of progress in dimensionally stable anodes , 1993 .

[65]  S. Raman,et al.  Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces. , 2014, ACS nano.

[66]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[67]  A. Bell,et al.  Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. , 2011, Journal of the American Chemical Society.

[68]  K. Mayrhofer,et al.  Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS , 2011 .

[69]  Aleksandar R. Zeradjanin,et al.  Gold dissolution: towards understanding of noble metal corrosion , 2013 .

[70]  G. Tremiliosi‐Filho,et al.  Limit to extent of formation of the quasi-two-dimensional oxide state on Au electrodes , 1997 .

[71]  C. Stampfl,et al.  Real Time Determination of the Electronic Structure of Unstable Reaction Intermediates during Au2O3 Reduction. , 2014, The journal of physical chemistry letters.

[72]  D. Cullen,et al.  Fuel Cells Catalyst for Start-Up and Shutdown Conditions: Electrochemical, XPS, and STEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Coated Nanostructured Thin Film Supports , 2012, Electrocatalysis.

[73]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[74]  K. Adjemian,et al.  Platinum Electro-dissolution in Acidic Media upon Potential Cycling , 2013, Electrocatalysis.

[75]  Thomas J. Schmidt,et al.  Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges , 2012 .

[76]  B. Conway,et al.  The role of surface films in the kinetics of oxygen evolution at Pd + Au alloy electrodes , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[77]  U. Stimming,et al.  A semiconductor model of the passive layer on iron electrodes and its application to electrochemical reactions , 1979 .

[78]  Xunyu Lu,et al.  Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution. , 2014, ChemSusChem.

[79]  Ronald Woods,et al.  A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 m sulphuric acid by cyclic voltammetry , 1972 .

[80]  H. Tang,et al.  PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode , 2006 .

[81]  S. Barnartt The Oxygen‐Evolution Reaction at Gold Anodes II . Overpotential Measurements and Reaction Mechanism in Sulfuric Acid Solutions , 1959 .

[82]  A. Davenport,et al.  In Situ Scanning Tunneling Microscopy Studies of the Formation and Reduction of a Gold Oxide Monolayer on Au(111) , 1994 .

[83]  A. Bell,et al.  In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen , 2012 .

[84]  H. L. Johnston,et al.  The Solubility of Gold Hydroxide in Alkali and Equilibria in the Saturated Solutions1 , 1938 .

[85]  A. Nishikata,et al.  Application of channel flow double electrode to the study on gold dissolution during potential cycling in sulfuric acid solution , 2012 .

[86]  J. Schultze,et al.  The influence of the tunnel probability on the anodic oxygen evolution and other redox reactions at oxide covered platinum electrodes , 1973 .

[87]  G. Attard,et al.  Specific adsorption of perchlorate anions on Pt{hkl} single crystal electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[88]  Norbert Adolph Lange,et al.  Handbook of chemistry , 1944 .

[89]  H. Angerstein-Kozlowska,et al.  Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane , 1987 .

[90]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[91]  K. Mayrhofer,et al.  Electrochemical dissolution of gold in acidic medium , 2013 .