New approaches in the treatment of type 2 diabetes.

[1]  B. Spiegelman,et al.  A Synthetic Antagonist for the Peroxisome Proliferator-activated Receptor γ Inhibits Adipocyte Differentiation* , 2000, The Journal of Biological Chemistry.

[2]  Y. Kido,et al.  Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. , 2000, The Journal of clinical investigation.

[3]  S. O’Rahilly,et al.  Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension , 1999, Nature.

[4]  J. Holst Glucagon-like peptide-1, a gastrointestinal hormone with a pharmaceutical potential. , 1999, Current medicinal chemistry.

[5]  B. Lowell An Essential Regulator of Adipogenesis and Modulator of Fat Cell Function: PPARγ , 1999, Cell.

[6]  Satoshi Tanaka,et al.  PPARγ Mediates High-Fat Diet–Induced Adipocyte Hypertrophy and Insulin Resistance , 1999 .

[7]  B. Spiegelman,et al.  PPARγ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro , 1999 .

[8]  J. Holst,et al.  Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7–36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats , 1999, Diabetologia.

[9]  K. Chien,et al.  PPARγ Is Required for Placental, Cardiac, and Adipose Tissue Development , 1999 .

[10]  J. Lehmann,et al.  A ureido-thioisobutyric acid (GW9578) is a subtype-selective PPARalpha agonist with potent lipid-lowering activity. , 1999, Journal of medicinal chemistry.

[11]  J. Reddy,et al.  Peroxisomal and Mitochondrial Fatty Acid β-Oxidation in Mice Nullizygous for Both Peroxisome Proliferator-activated Receptor α and Peroxisomal Fatty Acyl-CoA Oxidase , 1999, The Journal of Biological Chemistry.

[12]  J. Lehmann,et al.  A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-gamma reverses the diabetic phenotype of the Zucker diabetic fatty rat. , 1999, Diabetes.

[13]  J. Lehmann,et al.  A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R G Smith,et al.  Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. , 1999, Science.

[15]  A. Young,et al.  Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). , 1999, Diabetes.

[16]  Simeon I. Taylor,et al.  Deconstructing Type 2 Diabetes , 1999, Cell.

[17]  M. Maccoss,et al.  Characterization of a Novel, Non-peptidyl Antagonist of the Human Glucagon Receptor* , 1999, The Journal of Biological Chemistry.

[18]  B. Kennedy,et al.  Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. , 1999, Science.

[19]  Margaret S. Wu,et al.  Novel Peroxisome Proliferator-activated Receptor (PPAR) γ and PPARδ Ligands Produce Distinct Biological Effects* , 1999, The Journal of Biological Chemistry.

[20]  M. Maccoss,et al.  Potent, orally absorbed glucagon receptor antagonists. , 1999, Bioorganic & medicinal chemistry letters.

[21]  R. Pederson,et al.  Improved glucose tolerance in rats treated with the dipeptidyl peptidase IV (CD26) inhibitor Ile-thiazolidide. , 1999, Metabolism: clinical and experimental.

[22]  R. Burcelin,et al.  Long-lasting antidiabetic effect of a dipeptidyl peptidase IV-resistant analog of glucagon-like peptide-1. , 1999, Metabolism: clinical and experimental.

[23]  Jie Zhou,et al.  Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations , 1999, Diabetologia.

[24]  M. Lazar,et al.  A Potent Antidiabetic Thiazolidinedione with Unique Peroxisome Proliferator-activated Receptor γ-activating Properties* , 1998, The Journal of Biological Chemistry.

[25]  Y. Yazaki,et al.  A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. , 1998, Diabetes.

[26]  R. Carr,et al.  Discovery and structure-activity relationship of the first non-peptide competitive human glucagon receptor antagonists. , 1998, Journal of medicinal chemistry.

[27]  J. Holst,et al.  Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. , 1998, Diabetes.

[28]  G. Ramadori,et al.  A synthetic glucagon-like peptide-1 analog with improved plasma stability. , 1998, The Journal of endocrinology.

[29]  Carolyn B Levy,et al.  Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. , 1998, Diabetes.

[30]  R. Pederson,et al.  Improved Glucose Tolerance in Zucker Fatty Rats by Oral Administration of the Dipeptidyl Peptidase IV Inhibitor Isoleucine Thiazolidide , 1998, Diabetes.

[31]  B. Spiegelman PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. , 1998, Diabetes.

[32]  D. Danley,et al.  Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Drucker Glucagon-Like Peptides , 1998, Diabetes.

[34]  V. Hruby,et al.  Pure Glucagon Antagonists: Biological Activities and cAMP Accumulation Using Phosphodiesterase Inhibitors , 1997, Peptides.

[35]  J. Auwerx,et al.  Regulation of lipoprotein metabolism by thiazolidinediones occurs through a distinct but complementary mechanism relative to fibrates. , 1997, Arteriosclerosis, thrombosis, and vascular biology.

[36]  Peter J. Brown,et al.  Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ , 1997 .

[37]  F. Gonzalez Recent update on the PPARα-null mouse , 1997 .

[38]  M. Gresser,et al.  Mechanism of Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate* , 1997, The Journal of Biological Chemistry.

[39]  R. Burcelin,et al.  Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism. , 1996, Diabetes & metabolism.

[40]  A. Joyner,et al.  Glucose intolerance but normal satiety in mice with a null mutation in the glucagon–like peptide 1 receptor gene , 1996, Nature Medicine.

[41]  K. Petersen,et al.  The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. , 1996, The Journal of clinical investigation.

[42]  C. Strader,et al.  Molecular characterization of a common binding site for small molecules within the transmembrane domain of G-protein coupled receptors. , 1995, Journal of pharmacological and toxicological methods.

[43]  W. S. Faraci,et al.  CP-99,711: a non-peptide glucagon receptor antagonist , 1992 .

[44]  R. B. Merrifield,et al.  Synthetic peptide antagonists of glucagon. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Baron,et al.  Role of Hyperglucagonemia in Maintenance of Increased Rates of Hepatic Glucose Output in Type II Diabetics , 1987, Diabetes.