Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics

[1]  M. Glinchuk,et al.  Dipole glass and ferroelectricity in random-site electric dipole systems , 1990 .

[2]  Qiming Zhang,et al.  Change in electromechanical properties of 0.9PMN:0.1PT relaxor ferroelectric induced by uniaxial compressive stress directed perpendicular to the electric field , 1999 .

[3]  Dwight D. Viehland,et al.  Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3–PbTiO3 crystals , 2000 .

[4]  J. Íñiguez,et al.  Negative capacitance in multidomain ferroelectric superlattices , 2016, Nature.

[5]  M. Glinchuk,et al.  A random field theory based model for ferroelectric relaxors , 1996 .

[6]  P. Gehring,et al.  Phase diagram of the relaxor ferroelectric (1 − x)Pb(Mg1/3Nb2/3)O3+xPbTiO3 revisited: a neutron powder diffraction study of the relaxor skin effect , 2015 .

[7]  D. J. Barber,et al.  On short range ordering in the perovskite lead magnesium niobate , 1990 .

[8]  Wenwu Cao,et al.  Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. , 2014, Progress in materials science.

[9]  Paul Scherrer Institut,et al.  Soft Modes and Relaxor Ferroelectrics , 2008, 0808.3836.

[10]  C. Randall,et al.  Dielectric and pyroelectric properties of the morphotropic phase boundary lead barium niobate (PBN) single crystals at low temperature (10-300 K) , 1990 .

[11]  H. Ehrenberg,et al.  Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions , 2014 .

[12]  R. H. Boyd Relaxation processes in crystalline polymers: molecular interpretation — a review , 1985 .

[13]  A. Bussmann-Holder,et al.  Origin of polar nanoregions in relaxor ferroelectrics: Nonlinearity, discrete breather formation, and charge transfer , 2011 .

[14]  Guangzu Zhang,et al.  Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3–(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering , 2015 .

[15]  G. Verri,et al.  Random Electric Field Instabilities of Relaxor Ferroelectrics , 2017 .

[16]  L. Bellaiche,et al.  Effects of atomic short-range order on properties of the PbMg1/3Nb2/3O3 relaxor ferroelectric , 2016 .

[17]  Dragan Damjanovic A morphotropic phase boundary system based on polarization rotation and polarization extension , 2010, 1007.4394.

[18]  L. E. Cross,et al.  Importance of random fields on the properties and ferroelectric phase stability of 〈001〉 oriented 0.7 Pb(Mg1/3Nb2/3)O3–0.3 PbTiO3 crystals , 2001 .

[19]  Dragan Damjanovic,et al.  Electrostrictive and Piezoelectric Materials for Actuator Applications , 1992 .

[20]  T. Shrout,et al.  Critical Property in Relaxor‐PbTiO3 Single Crystals – Shear Piezoelectric Response , 2011, Advanced functional materials.

[21]  R. Blinc,et al.  NMR evidence for the coexistence of order-disorder and displacive components in barium titanate. , 2003, Physical review letters.

[22]  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[23]  W. Cao,et al.  Formation mechanism of highly [0 0 1]c textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity , 2016 .

[24]  Jingfeng Li,et al.  Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance , 2017, Advanced materials.

[25]  Zuo-Guang Ye,et al.  Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric , 2006, Nature materials.

[26]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[27]  Z. Ye High-Performance Piezoelectric Single Crystals of Complex Perovskite Solid Solutions , 2009 .

[28]  T. Shrout,et al.  Relaxor behavior of piezoelectric Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics sintered at low temperature , 2011 .

[29]  R. Pirc,et al.  Electrocaloric effect in relaxor ferroelectrics , 2010, 1010.2914.

[30]  Cross,et al.  Dipolar-glass model for lead magnesium niobate. , 1991, Physical review. B, Condensed matter.

[31]  Zhenxiang Cheng,et al.  The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals , 2016, Nature Communications.

[32]  C. Ang,et al.  Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3 , 2002 .

[33]  P. Gehring,et al.  Anomalous dispersion and thermal expansion in lightly-doped KTa1 - xNbxO3 , 1993 .

[34]  J. Zuo,et al.  Symmetry of piezoelectric (1–x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (x=0.31) single crystal at different length scales in the morphotropic phase boundary region , 2012 .

[35]  A. Bell Calculations of dielectric properties from the superparaelectric model of relaxors , 1993 .

[36]  A. Tagantsev,et al.  Mechanism of polarization response in the ergodic phase of a relaxor ferroelectric , 1998 .

[37]  M. Itoh,et al.  Relaxor Pb(Mg(1/3)Nb(2/3))O3: a ferroelectric with multiple inhomogeneities. , 2009, Physical review letters.

[38]  J. Eiras,et al.  Improvement of the phase diagram for the pseudobinary PbNb2O6–BaNb2O6 system , 2009 .

[39]  K. Uchino,et al.  Large electrostrictive effects in relaxor ferroelectrics , 1980 .

[40]  L. E. Cross,et al.  Freezing of the polarization fluctuations in lead magnesium niobate relaxors , 1990 .

[41]  Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics , 1983 .

[42]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[43]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[44]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[45]  W. Kleemann Relaxor ferroelectrics: Cluster glass ground state via random fields and random bonds , 2014, Progress in Advanced Dielectrics.

[46]  F. H. Dacol,et al.  Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3 , 1983 .

[47]  J. Gavarri,et al.  A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K , 1991 .

[48]  G. Shirane,et al.  Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1 -x )Pb (Mg1/3Nb2/3 )O3-xPbTiO3 (0≤x≤ 0.40) , 2006 .

[49]  Z. Ye,et al.  Fano resonance and dipolar relaxation in lead-free relaxors , 2014, Nature Communications.

[50]  S. Tsukada,et al.  Role of polar nanoregions with weak random fields in Pb-based perovskite ferroelectrics , 2017, Scientific Reports.

[51]  J. Zhai,et al.  Dielectric nonlinear characteristics of Ba(Zr0.35Ti0.65)O3 thin films grown by a sol-gel process , 2004 .

[52]  Z. Ye,et al.  DIELECTRIC RELAXATION IN RELAXOR FERROELECTRICS , 2012 .

[53]  E. Salje,et al.  Elastic excitations in BaTiO_{3} single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy , 2013 .

[54]  Qiang Li,et al.  Investigation of piezoelectric property and nanodomain structures for PIN–PZ–PMN–PT single crystals as a function of crystallographic orientation and temperature , 2017 .

[55]  N. Setter What is a ferroelectric–a materials designer perspective , 2016 .

[56]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[57]  Jiagang Wu,et al.  Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics , 2017 .

[58]  Shujun Zhang,et al.  Gradient chemical order in the relaxor Pb(Mg1∕3Nb2∕3)O3 , 2018 .

[59]  P. Gehring,et al.  Response of polar nanoregions in 68%Pb(Mg1/3Nb2/3)O3-32%PbTiO3 to a [001] electric field , 2008, 0806.0288.

[60]  R. Seshadri,et al.  Average and local structure of the Pb-free ferroelectric perovskites (Sr,Sn)TiO3 and (Ba,Ca,Sn)TiO3 , 2015 .

[61]  Z. Ye,et al.  Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics , 2016, Nature Communications.

[62]  L. Bellaiche,et al.  Finite-temperature properties of the relaxor PbMg 1 /3 Nb 2 /3 O 3 from atomistic simulations , 2015 .

[63]  L. E. Cross,et al.  Large Piezoelectric Effect Induced by Direct Current Bias in PMN:PT Relaxor Ferroelectric Ceramics , 1989 .

[64]  X. Tan,et al.  Effect of Ba Content on the Stress Sensitivity of the Antiferroelectric to Ferroelectric Phase Transition in (Pb,La,Ba,)(Zr,Sn,Ti)O3 Ceramics , 2014 .

[65]  A. Bell,et al.  Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 Solid Solutions , 2014 .

[66]  M. Carpenter,et al.  Domain glasses: Twin planes, Bloch lines, and Bloch points , 2015 .

[67]  Ke Wang,et al.  (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .

[68]  V. Shvartsman,et al.  State transition and electrocaloric effect of BaZrxTi1−xO3: Simulation and experiment , 2016, 1608.05010.

[69]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[70]  Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. , 2004, Physical review letters.

[71]  Meysam Sharifzadeh Mirshekarloo,et al.  Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films , 2010 .

[72]  J. Hlinka DO WE NEED THE ETHER OF POLAR NANOREGIONS , 2012 .

[73]  I. Kim,et al.  A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors , 2016 .

[74]  Jingfeng Li,et al.  Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction , 2007 .

[75]  D. Kiselev,et al.  Effect of surface disorder on the domain structure of PLZT ceramics , 2017 .

[76]  I. Chen Structural origin of relaxor ferroelectrics—revisited , 2000 .

[77]  T. Welberry,et al.  Chemical origin of nanoscale polar domains in PbZn 1/3 Nb 2/3 O 3 , 2006 .

[78]  M. Wołcyrz,et al.  Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the (110)-directed relative interdomain atomic shifts , 2007 .

[79]  Cross,et al.  Glassy polarization behavior of relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[80]  Xiu-yu Li,et al.  Self-polarized high piezoelectricity and its memory effect in ferroelectric single crystals , 2017 .

[81]  L. Eric Cross,et al.  Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates , 2000 .

[82]  Y. Uesu,et al.  Tem observation of polar domains in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 , 1998 .

[83]  Hidekazu Tanaka,et al.  FORMATION OF ARTIFICIAL BATIO3/SRTIO3 SUPERLATTICES USING PULSED LASER DEPOSITION AND THEIR DIELECTRIC PROPERTIES , 1994 .

[84]  Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. , 2005, Physical review letters.

[85]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[86]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[87]  A. Minor,et al.  Observation of polar vortices in oxide superlattices , 2016, Nature.

[88]  Andrew M. Rappe,et al.  Thin-film ferroelectric materials and their applications , 2017 .

[89]  A. Akbarzadeh,et al.  Field-induced percolation of polar nanoregions in relaxor ferroelectrics. , 2013, Physical review letters.

[90]  R. Pirc,et al.  Glassy freezing in relaxor ferroelectric lead magnesium niobate , 1998 .

[91]  M. Raschke,et al.  Phase coexistence and electric-field control of toroidal order in oxide superlattices. , 2017, Nature materials.

[92]  A. Jonscher Dielectric relaxation in solids , 1983 .

[93]  X. Tan,et al.  In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 Ceramics , 2011 .

[94]  X. Dong,et al.  Doped Pb(Zr,Sn,Ti)O3 Slim-Loop Ferroelectric Ceramics for High-Power Pulse Capacitors Application , 2008 .

[95]  A. Tagantsev,et al.  A BREATHING MODEL FOR THE POLARIZATION RESPONSE OF RELAXOR FERROELECTRICS , 1999 .

[96]  A. Rappe,et al.  Anisotropic local correlations and dynamics in a relaxor ferroelectric. , 2012, Physical review letters.

[97]  Yunzhi Wang,et al.  Ferroic glasses , 2017, npj Computational Materials.

[98]  A. Tagantsev,et al.  Enhanced electromechanical response of ferroelectrics due to charged domain walls , 2012, Nature Communications.

[99]  D. Durand,et al.  Order and disorder in the relaxor ferroelectric perovskite ? (PSN): comparison with simple perovskites ? and ? , 1997 .

[100]  A. Akbarzadeh,et al.  Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. , 2012, Physical review letters.

[101]  Fei Li,et al.  Multilayer Lead‐Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency , 2018, Advanced materials.

[102]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[103]  J. Íñiguez,et al.  Electrocaloric effects in the lead-free Ba ( Zr , Ti ) O 3 relaxor ferroelectric from atomistic simulations , 2017, 1706.08963.

[104]  X. Ren,et al.  Ferroelectric Domain Walls Approaching Morphotropic Phase Boundary , 2017 .

[105]  D. Viehland,et al.  Compositional heterogeneity and the origins of the multicell cubic state in Sn‐doped lead zirconate titanate ceramics , 1994 .

[106]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[107]  G. Shirane,et al.  Neutron elastic diffuse scattering study ofPb(Mg1/3Nb2/3)O3 , 2003, cond-mat/0308170.

[108]  S. K. Rout,et al.  Structural and dielectric relaxor properties of yttrium-doped Ba(Zr0.25Ti0.75)O3 ceramics , 2010 .

[109]  Dragan Damjanovic,et al.  Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics , 1997 .

[110]  L. Cross Relaxorferroelectrics: An overview , 1994 .

[111]  Kenji Uchino,et al.  Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals , 1982 .

[112]  Haosu Luo,et al.  The Growth and Properties of Relaxor‐Based Ferroelectric Single Crystals , 2010 .

[113]  R. Guo,et al.  Electric field dependent dielectric properties and high tunability of BaZrxTi1−xO3 relaxor ferroelectrics , 2006 .

[114]  Xiaowen Zhang,et al.  Electron diffraction and HREM study of a short-range ordered structure in the relaxor ferroelectric P b ( M g 1 / 3 Nb 2 / 3 ) O 3 , 2001 .

[115]  George A. Samara,et al.  TOPICAL REVIEW: The relaxational properties of compositionally disordered ABO3 perovskites , 2003 .

[116]  N. Zhang,et al.  The missing boundary in the phase diagram of PbZr1−xTixO3 , 2014, Nature Communications.

[117]  Xihong Hao,et al.  Improved Energy Storage Performance and Fatigue Endurance of Sr‐Doped PbZrO3 Antiferroelectric Thin Films , 2009 .

[118]  M. Yi,et al.  A phase-field model of relaxor ferroelectrics based on random field theory , 2015, 1511.07276.

[119]  S. K. Rout,et al.  Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters , 2009 .

[120]  S. Or,et al.  Cryogenic dielectric and piezoelectric activities in rhombohedral (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals with different crystallographic orientations , 2009 .

[121]  Ilya Grinberg,et al.  Relationship between local structure and phase transitions of a disordered solid solution , 2002, Nature.

[122]  H. Yamamura,et al.  A compositional fluctuation and properties of Pb(Zr, Ti)O3 , 1977 .

[123]  Kenji Uchino,et al.  Ferroelectric Devices , 2018 .

[124]  X. Yao,et al.  Dielectric behavior of lead magnesium niobate relaxors , 1997 .

[125]  X. Yao,et al.  Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-xSnx)O3 system at high temperature , 2012 .

[126]  M. Cantoni,et al.  Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. , 2005, Physical review letters.

[127]  M. Kosec,et al.  Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect , 2010 .

[128]  D. Xue,et al.  Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3- 50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary , 2011 .

[129]  Kenji Uchino,et al.  Relaxor ferroelectric devices , 1994 .

[130]  Qi Zhang,et al.  Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. , 2015, ACS applied materials & interfaces.

[131]  Dragan Damjanovic Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics , 2005 .

[132]  Yufeng Liu,et al.  High piezoelectricity of PLZT ceramics with strong frequency-dielectric dispersion below depolarization temperature , 2017 .

[133]  Guangyong Xu,et al.  Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor , 2006 .

[134]  X. Ren,et al.  High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength , 2017 .

[135]  John D. Budai,et al.  Phonon localization drives polar nanoregions in a relaxor ferroelectric , 2014, Nature Communications.

[136]  Leslie E. Cross,et al.  Field‐Forced Antiferroelectric‐to‐Ferroelectric Switching in Modified Lead Zirconate Titanate Stannate Ceramics , 1989 .

[137]  G. Shirane,et al.  Three-dimensional mapping of diffuse scattering in Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} , 2004 .

[138]  D. Viehland,et al.  Domain boundary-dominated systems: adaptive structures and functional twin boundaries , 2014 .

[139]  D. Viehland,et al.  Structural origin of room temperature poling enhanced piezoelectricity in modified Pb(Mg1/3Nb2/3)O3‐30%PbTiO3 crystals , 2017 .

[140]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[141]  M. Tyunina,et al.  Coexistence of ferroelectric and relaxor properties in epitaxial films of Ba1-xSrxTiO3 , 2004 .

[142]  D. Xue,et al.  Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material—Ba(Ti0.8Hf0.2)O3-(Ba0.7Ca0.3)TiO3 , 2012 .

[143]  Yang Ren,et al.  Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena , 2015 .

[144]  W. Kleemann RANDOM FIELDS IN RELAXOR FERROELECTRICS — A JUBILEE REVIEW , 2012 .

[145]  G. Haertling PLZT electrooptic materials and applications: a review , 1987 .

[146]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[147]  I. Jankowska‐Sumara Antiferroelectric phase transitions in single crystals PbZrO3:Sn revisited , 2014 .

[148]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[149]  H. Chan,et al.  Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics , 2004 .

[150]  Zhuo Xu,et al.  Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity , 2014 .

[151]  K. Singh,et al.  Antiferroelectric lead zirconate, a material for energy storage , 1989 .

[152]  N. Setter,et al.  The Role of B-Site Cation Disorder in Diffuse Phase-Transition Behavior of Perovskite Ferroelectrics , 1980 .

[153]  C. Ang,et al.  Ferroelectric relaxor Ba(Ti,Ce)O3 , 2002 .

[154]  K. Uchino,et al.  Electrostrictive effect in lead magnesium niobate single crystals , 1980 .

[155]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[156]  Kenji Uchino,et al.  Electrostrictive effects in antiferroelectric perovskites , 1981 .

[157]  Guangzu Zhang,et al.  Relaxor Ferroelectric‐Based Electrocaloric Polymer Nanocomposites with a Broad Operating Temperature Range and High Cooling Energy , 2015, Advanced materials.

[158]  X. Tan,et al.  The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics , 2011 .

[159]  Z. Ye,et al.  Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions , 1998 .

[160]  J. Eiras,et al.  A structural evidence of polar clusters in PLZT relaxor ceramics , 2016 .

[161]  G. Yang,et al.  Nonlinear strain and DC bias induced piezoelectric behaviour of electrostrictive lead magnesium niobate-lead titanate ceramics under high electric fields , 2002 .

[162]  I. Guedes,et al.  Phase diagram of the relaxor (1−x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 investigated by dielectric and Raman spectroscopies , 2004 .

[163]  I. Kornev,et al.  Pressure-induced phase transitions and structure of chemically ordered nanoregions in the lead-free relaxor ferroelectric Na_{1/2}Bi_{1/2}TiO_{3} , 2012 .

[164]  J. Íñiguez,et al.  Microscopic origins of the large piezoelectricity of leadfree (Ba,Ca)(Zr,Ti)O3 , 2017, Nature Communications.

[165]  M. Harmer,et al.  Ordering Structure and Dielectric Properties of Undoped and La/Na‐Doped Pb(Mg1/3Nb2/3)O3 , 1989 .

[166]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[167]  Zhuo Xu,et al.  Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) crystals. , 2010, Journal of applied physics.

[168]  C. Lynch,et al.  A phenomenological thermodynamic energy function for PIN-PMN-PT relaxor ferroelectric single crystals , 2017 .

[169]  Jiefang Li,et al.  Fragile phase stability in ( 1 − x ) Pb ( Mg 1 ∕ 3 Nb 2 ∕ 3 O 3 ) − x Pb Ti O 3 crystals: A comparison of [001] and [110] field-cooled phase diagrams , 2006, cond-mat/0602211.

[170]  Zhuo Xu,et al.  Effects of lanthanum modification on electrical and dielectric properties of Pb(Zr0.70,Ti0.30)O3 ceramics , 2011 .

[171]  A. Rappe,et al.  Molecular dynamics study of dielectric response in a relaxor ferroelectric. , 2009, Physical Review Letters.

[172]  Erich H. Kisi,et al.  Elastic softening and polarization memory in PZN-PT relaxor ferroelectrics | NOVA. The University of Newcastle's Digital Repository , 2011 .

[173]  S. Chi,et al.  Role of random electric fields in relaxors , 2014, Proceedings of the National Academy of Sciences.

[174]  Hwan R. Jo,et al.  A high energy density relaxor antiferroelectric pulsed capacitor dielectric , 2016 .

[175]  U. Waghmare,et al.  Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lengthscale for polar nanoregions , 2005 .

[176]  Zhuo Xu,et al.  Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage , 2017 .

[177]  Relaxor Ferroelectrics,et al.  Relaxor Ferroelectrics , 2018 .

[178]  J. Zuo,et al.  Determination of fluctuations in local symmetry and measurement by convergent beam electron diffraction: applications to a relaxor‐based ferroelectric crystal after thermal annealing , 2013 .

[179]  Nonlinear dynamics of polar regions in paraelectric phase of (Ba1-x,Srx)TiO3 ceramics , 2017, 1705.04002.

[180]  G.-M. Rotaru,et al.  Relaxing with relaxors: a review of relaxor ferroelectrics , 2011 .

[181]  Yunzhi Wang,et al.  Phase diagram of polar states in doped ferroelectric systems , 2012 .

[182]  D. Viehland,et al.  Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics , 1993 .

[183]  H. Kungl,et al.  Nanodomain structure of Pb[Zr 1-x Ti x ]O 3 at its morphotropic phase boundary: Investigations from local to average structure , 2007 .

[184]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[185]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[186]  P. Gehring,et al.  Fluctuating defects in the incipient relaxor K 1 − x Li x TaO 3 ( x = 0.02 ) , 2014, 1505.05439.

[187]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[188]  N. Yasuda,et al.  Dielectric Properties and Phase Transitions of Ba(Ti1-xSnx)O3 Solid Solution , 1996 .

[189]  Fei Li,et al.  Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals , 2013 .

[190]  Zhao Pan,et al.  Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials. , 2017, Physical review letters.

[191]  Ilya Grinberg,et al.  Slush-like polar structures in single-crystal relaxors , 2017, Nature.

[192]  Jianguo Zhu,et al.  Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead‐Free Ceramics , 2016, Advanced materials.

[193]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[194]  V. N. Singh,et al.  Room temperature lead-free relaxor–antiferroelectric electroceramics for energy storage applications , 2014 .

[195]  G. Shirane,et al.  Neutron diffuse scattering from polar nanoregions in the relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2001, cond-mat/0109386.

[196]  T. Shrout,et al.  Dielectric and piezoelectric activities in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals from 5 K to 300 K , 2012 .