Enhanced diagnostics of radiating relativistic singularities and BISER by nonlinear post-compression of optical probe pulse

The enhancement of the resolution of pump-probe optical diagnostics for ultrafast processes by compressing the probe pulse duration using the CafCA approach [1] is considered on an example of the BISER soft-X-ray generation [2] with the J-KAREN-P laser [3].

[1]  E. Khazanov,et al.  11 fs, 1.5 PW laser with nonlinear pulse compression. , 2021, Optics express.

[2]  S. V. Bulanov,et al.  Relativistic flying forcibly oscillating reflective diffraction grating. , 2020, Physical review. E.

[3]  J. Koga,et al.  Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal , 2020, Crystals.

[4]  J. Koga,et al.  Status and progress of the J-KAREN-P high intensity laser system at QST , 2020 .

[5]  E. Khazanov,et al.  Thin plate compression of a sub-petawatt Ti:Sa laser pulses , 2020 .

[6]  E. Khazanov,et al.  Two-stage nonlinear compression of high-power femtosecond laser pulses , 2020, Quantum Electronics.

[7]  E. Khazanov,et al.  Fivefold compression of 250-TW laser pulses , 2020 .

[8]  David Neely,et al.  Optical probing of relativistic plasma singularities , 2019, 1903.02869.

[9]  Zhi‐zhan Xu,et al.  The laser beamline in SULF facility , 2020, High Power Laser Science and Engineering.

[10]  E. Khazanov,et al.  Nonlinear compression of high-power laser pulses: compression after compressor approach , 2019, Physics-Uspekhi.

[11]  Yuxin Leng,et al.  339  J high-energy Ti:sapphire chirped-pulse amplifier for 10  PW laser facility. , 2018, Optics letters.

[12]  Kiminori Kondo,et al.  High-contrast high-intensity repetitive petawatt laser. , 2018, Optics letters.

[13]  M. Kishimoto,et al.  Approaching the diffraction-limited, bandwidth-limited Petawatt. , 2017, Optics express.

[14]  Jin Woo Yoon,et al.  4.2  PW, 20  fs Ti:sapphire laser at 0.1  Hz. , 2017, Optics letters.

[15]  Henri Vincenti,et al.  Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser , 2017, IEEE Journal of Quantum Electronics.

[16]  P. R. Bolton,et al.  Burst intensification by singularity emitting radiation in multi-stream flows , 2017, Scientific Reports.

[17]  D. Neely,et al.  High-order harmonic generation by relativistic plasma singularities , 2018 .

[18]  G. Paulus,et al.  Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy. , 2014, Physical review letters.

[19]  E. Khazanov,et al.  Use of polyethylene terephthalate for temporal recompression of intense femtosecond laser pulses , 2015 .

[20]  E. Khazanov,et al.  Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics , 2014, 1402.5676.

[21]  Takashi Kameshima,et al.  High order harmonics from relativistic electron spikes , 2014 .

[22]  G. Paulus,et al.  Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions , 2013 .

[23]  J. Koga,et al.  High performance imaging of relativistic soft X‐ray harmonics by sub‐micron resolution LiF film detectors , 2012 .

[24]  S. V. Bulanov,et al.  On the breaking of a plasma wave in a thermal plasma. I. The structure of the density singularity , 2012, 1202.1903.

[25]  S. V. Bulanov,et al.  Soft-x-ray harmonic comb from relativistic electron spikes. , 2010, Physical review letters.

[26]  S. V. Bulanov,et al.  Enhancement of photon number reflected by the relativistic flying mirror. , 2009, Physical review letters.

[27]  D. Kaplan,et al.  Self-referenced spectral interferometry , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[28]  S. V. Bulanov,et al.  Bow wave from ultraintense electromagnetic pulses in plasmas. , 2008, Physical review letters.

[29]  Yoshiaki Kato,et al.  Frequency multiplication of light back-reflected from a relativistic wake wave , 2007 .

[30]  M Kando,et al.  Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. , 2007, Physical review letters.

[31]  D. Neely,et al.  Development of a dual beam facility for multiple wavelength, short pulse optical probing of experiments in Target Area 2 , 2007 .

[32]  G. Kalintchenko,et al.  Snapshots of laser wakefields , 2006 .

[33]  Chris J. Hooker,et al.  The Astra Gemini project - : A dual-beam petawatt Ti:Sapphire laser system , 2006 .

[34]  Toshiki Tajima,et al.  Light intensification towards the Schwinger limit. , 2003, Physical review letters.

[35]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[36]  F. Krausz,et al.  Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. , 1994, Optics letters.

[37]  S. V. Bulanov,et al.  Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma , 1992 .

[38]  R. Wagenet,et al.  Advances in Soil Science , 1988, Advances in Soil Science.

[39]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[40]  Dan Anderson,et al.  Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides , 1983 .

[41]  M. Deakin,et al.  Catastrophe theory. , 1977, Science.

[42]  A. Litvak FINITE AMPLITUDE WAVE BEAMS IN A MAGNETO-ACTIVE PLASMA. , 1969 .

[43]  A. Litvak,et al.  A parabolic equation for calculating the fields in dispersive nonlinear media , 1967 .

[44]  G. A. Askaryan,et al.  EFFECT OF THE GRADIENT OF A STRONG ELECTROMAGNETIC RAY ON ELECTRONS AND ATOMS , 1962 .

[45]  A. Akhiezer,et al.  THEORY OF WAVE MOTION OF AN ELECTRON PLASMA , 1956 .

[46]  A. Einstein On the Electrodynamics of Moving Bodies , 2005 .