Generalized Bonferroni mean operators in multi-criteria aggregation

In this paper we provide a systematic investigation of a family of composed aggregation functions which generalize the Bonferroni mean. Such extensions of the Bonferroni mean are capable of modeling the concepts of hard and soft partial conjunction and disjunction as well as that of k-tolerance and k-intolerance. There are several interesting special cases with quite an intuitive interpretation for application.

[1]  Ronald R. Yager,et al.  On generalized bonferroni means , 2009 .

[2]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[3]  Jozo J. Dujmovic,et al.  Continuous Preference Logic for System Evaluation , 2007, IEEE Transactions on Fuzzy Systems.

[4]  Vicenç Torra,et al.  Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies) , 2006 .

[5]  Jozo J. Dujmovic Characteristic forms of generalized conjunction/disjunction , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[6]  Ronald R. Yager,et al.  On generalized Bonferroni mean operators for multi-criteria aggregation , 2009, Int. J. Approx. Reason..

[7]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[8]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[9]  Gaspar Mayor,et al.  Aggregation Operators , 2002 .

[10]  Carlo Bonferroni Sulle medie multiple di potenze , 1950 .

[11]  Henrik Legind Larsen,et al.  Generalized conjunction/disjunction , 2007, Int. J. Approx. Reason..

[12]  Vicenç Torra,et al.  Aggregation operators , 2007, Int. J. Approx. Reason..

[13]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[14]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[15]  Jean-Luc Marichal,et al.  k-intolerant capacities and Choquet integrals , 2007, Eur. J. Oper. Res..