Genetic analysis of virulence and antimicrobial-resistant plasmid pOU7519 in Salmonella enterica serovar Choleraesuis.

[1]  W. Brown,et al.  Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae , 2016, BMC Biotechnology.

[2]  C. Chiu,et al.  Evaluation of Gram-negative bacterial infection by a stable and conjugative bioluminescence plasmid in a mouse model , 2014, Journal of Biomedical Science.

[3]  C. Chiu,et al.  Clinical, microbiologic, and outcome analysis of mycotic aortic aneurysm: the role of endovascular repair. , 2014, Surgical infections.

[4]  C. Chiu,et al.  Decline of Salmonella enterica Serotype Choleraesuis Infections, Taiwan , 2014, Emerging infectious diseases.

[5]  C. Chiou,et al.  Reduction of Salmonella enterica serovar Choleraesuis carrying large virulence plasmids after the foot and mouth disease outbreak in swine in southern Taiwan, and their independent evolution in human and pig. , 2012, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[6]  R. Johnston,et al.  Inheritance of the Salmonella virulence plasmids: mostly vertical and rarely horizontal. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[7]  M. Brockhurst,et al.  Plasmid-mediated horizontal gene transfer is a coevolutionary process. , 2012, Trends in microbiology.

[8]  Lin Li,et al.  Characterization and horizontal transfer of class 1 integrons in Salmonella strains isolated from food products of animal origin. , 2011, International journal of food microbiology.

[9]  S. Montaño,et al.  Moving DNA around: DNA transposition and retroviral integration. , 2011, Current opinion in structural biology.

[10]  Songnian Hu,et al.  Analysis of pSC138, the multidrug resistance plasmid of Salmonella enterica serotype Choleraesuis SC-B67. , 2011, Plasmid.

[11]  T. Asai,et al.  Contribution of enhanced efflux to reduced susceptibility of Salmonella enterica serovar Choleraesuis to fluoroquinolone and other antimicrobials. , 2011, The Journal of veterinary medical science.

[12]  C. Chiu,et al.  Increasing ceftriaxone resistance in Salmonellae, Taiwan. , 2011, Emerging infectious diseases.

[13]  Claudine Médigue,et al.  Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence , 2010, BMC Genomics.

[14]  M. A. Jensen,et al.  DMSO and Betaine Greatly Improve Amplification of GC-Rich Constructs in De Novo Synthesis , 2010, PloS one.

[15]  F. Aarestrup,et al.  Molecular Characterization of Extended-Spectrum Cephalosporinase-Producing Salmonella enterica Serovar Choleraesuis Isolates from Patients in Thailand and Denmark , 2009, Journal of Clinical Microbiology.

[16]  E. J. Threlfall,et al.  Detection of Salmonella enterica serovar Typhimurium with pUO-StVR2-like virulence-resistance hybrid plasmids in the United Kingdom , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[17]  M. Mendoza,et al.  Characterization of pUO-StVR2, a Virulence-Resistance Plasmid Evolved from the pSLT Virulence Plasmid of Salmonella enterica Serovar Typhimurium , 2008, Antimicrobial Agents and Chemotherapy.

[18]  Yan Boucher,et al.  The Evolution of Class 1 Integrons and the Rise of Antibiotic Resistance , 2008, Journal of bacteriology.

[19]  C. Chiu,et al.  Complete nucleotide sequence of a virulence plasmid of Salmonella enterica serovar Dublin and its phylogenetic relationship to the virulence plasmids of serovars Choleraesuis, Enteritidis and Typhimurium. , 2008, FEMS microbiology letters.

[20]  C. Chiu,et al.  Evolution of the virulence plasmids of non-typhoid Salmonella and its association with antimicrobial resistance. , 2006, Microbes and infection.

[21]  Songnian Hu,et al.  Complete nucleotide sequence of pSCV50, the virulence plasmid of Salmonella enterica serovar Choleraesuis SC-B67. , 2006, Plasmid.

[22]  C. Chiu,et al.  Resistance to fluoroquinolones linked to gyrA and par C mutations and overexpression of acr AB efflux pump in Salmonella enterica serotype Choleraesuis. , 2005, Microbial drug resistance.

[23]  Laura S. Frost,et al.  Mobile genetic elements: the agents of open source evolution , 2005, Nature Reviews Microbiology.

[24]  Songnian Hu,et al.  The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen , 2005, Nucleic acids research.

[25]  R. Clubb,et al.  The structure of the excisionase (Xis) protein from conjugative transposon Tn916 provides insights into the regulation of heterobivalent tyrosine recombinases. , 2005, Journal of molecular biology.

[26]  J. E. Olsen,et al.  Differences in the carriage and the ability to utilize the serotype associated virulence plasmid in strains of Salmonella enterica serotype Typhimurium investigated by use of a self-transferable virulence plasmid, pOG669. , 2004, Microbial pathogenesis.

[27]  J. Brookfield Evolutionary Genetics: Mobile DNAs as Sources of Adaptive Change? , 2004, Current Biology.

[28]  C. Chiu,et al.  Isolation of Salmonella enterica serotype choleraesuis resistant to ceftriaxone and ciprofloxacin , 2004, The Lancet.

[29]  C. Chiu,et al.  Salmonella enterica Serotype Choleraesuis: Epidemiology, Pathogenesis, Clinical Disease, and Treatment , 2004, Clinical Microbiology Reviews.

[30]  B. Guerra,et al.  Characterization of a Self-Transferable Plasmid from Salmonella enterica Serotype Typhimurium Clinical Isolates Carrying Two Integron-Borne Gene Cassettes Together with Virulence and Drug Resistance Genes , 2002, Antimicrobial Agents and Chemotherapy.

[31]  R. Tauxe,et al.  Salmonella surveillance: a global survey of public health serotyping , 2002, Epidemiology and Infection.

[32]  C. Chiu,et al.  EMERGENCE OF FLUOROQUINOLONE RESISTANCE IN SALMONELLA ENTERICA SEROTYPE CHOLERAESUIS THE EMERGENCE IN TAIWAN OF FLUOROQUINOLONE RESISTANCE IN SALMONELLA ENTERICA SEROTYPE CHOLERAESUIS , 2002 .

[33]  R. Hall,et al.  Transposon Tn21, Flagship of the Floating Genome , 1999, Microbiology and Molecular Biology Reviews.

[34]  C. Chu,et al.  Comparative Physical and Genetic Maps of the Virulence Plasmids of Salmonella enterica Serovars Typhimurium, Enteritidis, Choleraesuis, and Dublin , 1999, Infection and Immunity.

[35]  Margaret C. M. Smith,et al.  In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Libby,et al.  The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host , 1997, Infection and immunity.

[37]  J. Ou,et al.  Presence of F-like OriT base-pair sequence on the virulence plasmids of Salmonella serovars Gallinarum, Enteritidis, and Typhimurium, but absent in those of Choleraesuis and Dublin. , 1994, Microbial pathogenesis.

[38]  R. Schmitt,et al.  Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. , 1992, Gene.

[39]  S. T. Liu,et al.  Rapid procedure for detection and isolation of large and small plasmids , 1981, Journal of bacteriology.