暂无分享,去创建一个
[1] Adrian Sandu,et al. Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales , 2013, J. Sci. Comput..
[2] A. Sayfy,et al. Additive methods for the numerical solution of ordinary differential equations , 1980 .
[3] Daniel R. Reynolds,et al. Relaxed Multirate Infinitesimal Step Methods , 2018, 1808.03718.
[4] Adrian Sandu. A Class of Multirate Infinitesimal GARK Methods , 2019, SIAM J. Numer. Anal..
[5] Vu Thai Luan,et al. Exponential Rosenbrock methods of order five - construction, analysis and numerical comparisons , 2014, J. Comput. Appl. Math..
[6] John N. Shadid,et al. Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems , 2005 .
[7] Adrian Sandu,et al. A Generalized-Structure Approach to Additive Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..
[8] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[9] Ralf Wolke,et al. Numerical solution of multiscale problems in atmospheric modeling , 2012 .
[10] Adrian Sandu,et al. A Class Of Implicit-Explicit Two-Step Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..
[11] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[12] Adrian Sandu,et al. Multirate generalized additive Runge Kutta methods , 2016, Numerische Mathematik.
[13] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[14] Mayya Tokman,et al. A new class of split exponential propagation iterative methods of Runge-Kutta type (sEPIRK) for semilinear systems of ODEs , 2014, J. Comput. Phys..
[15] M. Carpenter,et al. Higher-order additive Runge–Kutta schemes for ordinary differential equations , 2019, Applied Numerical Mathematics.
[16] Oswald Knoth,et al. Extended multirate infinitesimal step methods: Derivation of order conditions , 2021, J. Comput. Appl. Math..
[17] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[18] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[19] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[20] Adrian Sandu,et al. Parallel Implicit-Explicit General Linear Methods , 2020, Communications on Applied Mathematics and Computation.
[21] J. R. Cash,et al. Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .
[22] John N. Shadid,et al. An A Posteriori-A Priori Analysis of Multiscale Operator Splitting , 2008, SIAM J. Numer. Anal..
[23] Mayya Tokman,et al. New Adaptive Exponential Propagation Iterative Methods of Runge-Kutta Type , 2012, SIAM J. Sci. Comput..
[24] Ralf Wolke,et al. Multirate Runge-Kutta schemes for advection equations , 2009 .
[25] Mayya Tokman,et al. A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) , 2011, J. Comput. Phys..
[26] C. W. Gear,et al. Multirate linear multistep methods , 1984 .
[27] John C. Butcher,et al. Runge–Kutta Methods for Ordinary Differential Equations , 2015 .
[28] Vu Thai Luan,et al. A New Class of High-Order Methods for Multirate Differential Equations , 2019, SIAM J. Sci. Comput..
[29] Adrian Sandu,et al. Partitioned and Implicit–Explicit General Linear Methods for Ordinary Differential Equations , 2013, J. Sci. Comput..
[30] Ralf Wolke,et al. Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows , 1998 .
[31] John N. Shadid,et al. Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, J. Sci. Comput..
[32] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[33] A. Cardone,et al. Extrapolation-based implicit-explicit general linear methods , 2013, Numerical Algorithms.
[34] Daniel R. Reynolds,et al. Relaxed Multirate Infinitesimal Step Methods , 2018 .
[35] Adrian Sandu,et al. Implicit Multirate GARK Methods , 2019, Journal of Scientific Computing.
[36] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[38] Adrian Sandu,et al. High Order Implicit-explicit General Linear Methods with Optimized Stability Regions , 2014, SIAM J. Sci. Comput..
[39] Oswald Knoth,et al. Multirate infinitesimal step methods for atmospheric flow simulation , 2009 .
[40] Adrian Sandu,et al. Construction of highly stable implicit-explicit general linear methods , 2015 .
[41] Vu Thai Luan,et al. Explicit exponential Runge-Kutta methods of high order for parabolic problems , 2013, J. Comput. Appl. Math..
[42] Gurij Ivanovich Marchuk,et al. Some application of splitting-up methods to the solution of mathematical physics problems , 1968 .
[43] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[44] Adrian Sandu,et al. Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems with Multiple Time Scales , 2018, SIAM J. Sci. Comput..
[45] G. J. Cooper,et al. Additive Runge-Kutta methods for stiff ordinary differential equations , 1983 .