Implicit-explicit multirate infinitesimal methods

This work focuses on the development of a new class of high-order accurate methods for multirate time integration of systems of ordinary differential equations. Unlike other recent work in this area, the proposed methods support mixed implicit-explicit (IMEX) treatment of the slow time scale. In addition to allowing this flexibility at the slow time scale, the proposed methods utilize a so-called `infinitesimal' formulation for the fast time scale through definition of a sequence of modified ``fast'' initial-value problems, that may be solved using any viable solver. We name the proposed class as implicit-explicit multirate infinitesimal (IMEX-MRI) methods. In addition to defining these methods, we prove that they may be viewed as specific instances of generalized-structure additive Runge--Kutta (GARK) methods, and derive a set of order conditions on the IMEX-MRI coefficients to guarantee both third and fourth order accuracy for the overall multirate method. Additionally, we provide three specific IMEX-MRI methods, two of order three and one of order four. We conclude with numerical simulations demonstrating their predicted convergence rates on two multirate test problems, and compare their efficiency against legacy IMEX multirate methods.

[1]  Adrian Sandu,et al.  Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales , 2013, J. Sci. Comput..

[2]  A. Sayfy,et al.  Additive methods for the numerical solution of ordinary differential equations , 1980 .

[3]  Daniel R. Reynolds,et al.  Relaxed Multirate Infinitesimal Step Methods , 2018, 1808.03718.

[4]  Adrian Sandu A Class of Multirate Infinitesimal GARK Methods , 2019, SIAM J. Numer. Anal..

[5]  Vu Thai Luan,et al.  Exponential Rosenbrock methods of order five - construction, analysis and numerical comparisons , 2014, J. Comput. Appl. Math..

[6]  John N. Shadid,et al.  Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems , 2005 .

[7]  Adrian Sandu,et al.  A Generalized-Structure Approach to Additive Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..

[8]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[9]  Ralf Wolke,et al.  Numerical solution of multiscale problems in atmospheric modeling , 2012 .

[10]  Adrian Sandu,et al.  A Class Of Implicit-Explicit Two-Step Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..

[11]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[12]  Adrian Sandu,et al.  Multirate generalized additive Runge Kutta methods , 2016, Numerische Mathematik.

[13]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[14]  Mayya Tokman,et al.  A new class of split exponential propagation iterative methods of Runge-Kutta type (sEPIRK) for semilinear systems of ODEs , 2014, J. Comput. Phys..

[15]  M. Carpenter,et al.  Higher-order additive Runge–Kutta schemes for ordinary differential equations , 2019, Applied Numerical Mathematics.

[16]  Oswald Knoth,et al.  Extended multirate infinitesimal step methods: Derivation of order conditions , 2021, J. Comput. Appl. Math..

[17]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[18]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[19]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[20]  Adrian Sandu,et al.  Parallel Implicit-Explicit General Linear Methods , 2020, Communications on Applied Mathematics and Computation.

[21]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[22]  John N. Shadid,et al.  An A Posteriori-A Priori Analysis of Multiscale Operator Splitting , 2008, SIAM J. Numer. Anal..

[23]  Mayya Tokman,et al.  New Adaptive Exponential Propagation Iterative Methods of Runge-Kutta Type , 2012, SIAM J. Sci. Comput..

[24]  Ralf Wolke,et al.  Multirate Runge-Kutta schemes for advection equations , 2009 .

[25]  Mayya Tokman,et al.  A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) , 2011, J. Comput. Phys..

[26]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[27]  John C. Butcher,et al.  Runge–Kutta Methods for Ordinary Differential Equations , 2015 .

[28]  Vu Thai Luan,et al.  A New Class of High-Order Methods for Multirate Differential Equations , 2019, SIAM J. Sci. Comput..

[29]  Adrian Sandu,et al.  Partitioned and Implicit–Explicit General Linear Methods for Ordinary Differential Equations , 2013, J. Sci. Comput..

[30]  Ralf Wolke,et al.  Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows , 1998 .

[31]  John N. Shadid,et al.  Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, J. Sci. Comput..

[32]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[33]  A. Cardone,et al.  Extrapolation-based implicit-explicit general linear methods , 2013, Numerical Algorithms.

[34]  Daniel R. Reynolds,et al.  Relaxed Multirate Infinitesimal Step Methods , 2018 .

[35]  Adrian Sandu,et al.  Implicit Multirate GARK Methods , 2019, Journal of Scientific Computing.

[36]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[38]  Adrian Sandu,et al.  High Order Implicit-explicit General Linear Methods with Optimized Stability Regions , 2014, SIAM J. Sci. Comput..

[39]  Oswald Knoth,et al.  Multirate infinitesimal step methods for atmospheric flow simulation , 2009 .

[40]  Adrian Sandu,et al.  Construction of highly stable implicit-explicit general linear methods , 2015 .

[41]  Vu Thai Luan,et al.  Explicit exponential Runge-Kutta methods of high order for parabolic problems , 2013, J. Comput. Appl. Math..

[42]  Gurij Ivanovich Marchuk,et al.  Some application of splitting-up methods to the solution of mathematical physics problems , 1968 .

[43]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[44]  Adrian Sandu,et al.  Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems with Multiple Time Scales , 2018, SIAM J. Sci. Comput..

[45]  G. J. Cooper,et al.  Additive Runge-Kutta methods for stiff ordinary differential equations , 1983 .