[11C]Flumazenil PET in Temporal Lobe Epilepsy: Do We Need an Arterial Input Function or Kinetic Modeling?

Reduced signal on [11C]]flumazenil (FMZ) positron emission tomography (PET) is associated with epileptogenic foci. Linear correlations within individuals between parametric and nonparametric images of FMZ binding have been shown, and various methods have been used, without comparison of diagnostic usefulness. Using hippocampal sclerosis (HS) as a test case, we formally compare the diagnostic yield of parametric images obtained either with a parent tracer arterial plasma input function and spectral analysis (yielding volume-of-distribution (VD) images), or with an image-based input function and the simplified reference tissue model (binding potential images, BP-SRTM) with the diagnostic yield of semiquantitative-integrated (ADD) images from 10 to 20 or 20 to 40 mins (ADD1020 and ADD2040). Dynamic 90-min [11C]FMZ PET datasets and arterial plasma input functions were available for 15 patients with medically refractory medial temporal lobe epilepsy (TLE) and histologically verified unilateral HS and for 13 control subjects. SPM2 was used for analysis. ADD1020 and ADD2040 images showed decreased FMZ uptake ipsilateral to the epileptogenic hippocampus in 13/15 cases; 6/13 had bilateral decreases in the ADD1020 analysis and 5/13 in the ADD2040 analysis. BP-SRTM images detected ipsilateral decreases in 12/15 cases, with bilateral decreases in three. In contrast, VD images showed ipsilateral hippocampal decreases in all 15 patients, with bilateral decreases in three patients. Bilateral decreases in the ADD images tended to be more symmetrical and in one case were more marked contralaterally. Full quantification with an image-independent input should ideally be used in the evaluation of FMZ PET; at least in TLE, intrasubject correlations do not predict equivalent clinical usefulness.

[1]  C. Bruton,et al.  The neuropathology of temporal lobe epilepsy , 1988 .

[2]  Vincent J. Cunningham,et al.  Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.

[3]  Ivanka Savic,et al.  [11C]Flumazenil Positron Emission Tomography Visualizes Frontal Epileptogenic Regions , 1995, Epilepsia.

[4]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[5]  O Muzik,et al.  Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy , 2000, Neurology.

[6]  M Vapalahti,et al.  [11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy: correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. , 2000, Neurology.

[7]  D J Brooks,et al.  Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission , 2000, Neurology.

[8]  O Muzik,et al.  Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome , 2001, Neurology.

[9]  D J Brooks,et al.  11C-flumazenil PET in neocortical epilepsy , 1998, Neurology.

[10]  O Muzik,et al.  [11C]flumazenil PET: activity images versus parametric images for the detection of neocortical epileptic foci. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  W. van Paesschen,et al.  Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. , 1997, Brain : a journal of neurology.

[12]  O. Muzik,et al.  Glucose and [11C]flumazenil positron emission tomography abnormalities of thalamic nuclei in temporal lobe epilepsy , 1999, Neurology.

[13]  V J Cunningham,et al.  Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy , 2001, Neurology.

[14]  François Mauguière,et al.  Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenil-PET study. , 2005, Brain : a journal of neurology.

[15]  L Cinotti,et al.  Parameter and index images of benzodiazepine receptor concentration in the brain. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  Alexander Hammers,et al.  Periventricular White Matter Flumazenil Binding and Postoperative Outcome in Hippocampal Sclerosis , 2005, Epilepsia.

[17]  M. Richardson,et al.  Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. , 2003, Brain : a journal of neurology.

[18]  G. Weber-Luxenburger,et al.  Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry , 2000, European journal of neurology.

[19]  C Crouzel,et al.  Quantification of Benzodiazepine Receptors in Human Brain Using PET, [11C]Flumazenil, and a Single-Experiment Protocol , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  Adriaan A Lammertsma,et al.  Population plasma pharmacokinetics of 11C-flumazenil at tracer concentrations. , 2005, British journal of clinical pharmacology.

[21]  Jerome Engel,et al.  Outcome with respect to epileptic seizures. , 1993 .

[22]  O Muzik,et al.  Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy , 2000, Neurology.

[23]  F Mauguière,et al.  Transient and falsely lateralizing flumazenil-PET asymmetries in temporal lobe epilepsy , 1999, Neurology.

[24]  J C Froment,et al.  Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. , 1998, Brain : a journal of neurology.

[25]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[26]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[27]  Karl J. Friston,et al.  Cerebral benzodiazepine receptors in hippocampal sclerosis. An objective in vivo analysis. , 1996, Brain : a journal of neurology.

[28]  G. Franck,et al.  Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy? , 1997, Journal of neurology, neurosurgery, and psychiatry.

[29]  Effects of Metabolite Correction for Arterial Input Function on Quantitative Receptor Images With 11C-Flumazenil in Clinical Positron Emission Tomography Studies , 2004, Journal of computer assisted tomography.

[30]  R. Koeppe,et al.  Parametric in vivo imaging of benzodiazepine receptor distribution in human brain , 1991, Annals of neurology.

[31]  I Savic,et al.  Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. , 1993, Journal of neurology, neurosurgery, and psychiatry.

[32]  T. Jones,et al.  Spectral Analysis of Dynamic PET Studies , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  J. Delforge,et al.  Parametric Images of Benzodiazepine Receptor Concentration Using a Partial-Saturation Injection , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  D E Kuhl,et al.  In vivo cerebral metabolism and central benzodiazepine‐receptor binding in temporal lobe epilepsy , 1993, Neurology.

[35]  D J Brooks,et al.  Abnormalities of grey and white matter [11C]flumazenil binding in temporal lobe epilepsy with normal MRI. , 2002, Brain : a journal of neurology.

[36]  V J Cunningham,et al.  11C-flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe epilepsy , 1997, Neurology.

[37]  G. Franck,et al.  Is 11 C-flumazenil PET superior to 18 FDG PET and 1231-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy ? , 2003 .

[38]  T Sasaki,et al.  Intrasubject correlation between static sean and distribution volume images for [11C]flumazenil PET , 2000, Annals of nuclear medicine.

[39]  K. Wienhard,et al.  MRI-Guided Flumazenil- and FDG-PET in Temporal Lobe Epilepsy , 1996, NeuroImage.

[40]  A Connelly,et al.  The spectrum of hippocampal sclerosis: A quantitative magnetic resonance imaging study , 1997, Annals of neurology.

[41]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.