Reconstructing a variety from its topology (after Koll\'{a}r, building on earlier work of Lieblich and Olsson)
暂无分享,去创建一个
[1] A. Grothendieck,et al. Éléments de géométrie algébrique , 1960 .
[2] André Néron,et al. Problèmes arithmétique et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps , 1952 .
[3] T. Willmore. Algebraic Geometry , 1973, Nature.
[4] Steven L. Kleiman,et al. Bertini theorems for hypersurface sections containing a subscheme , 1979 .
[5] V. Srinivas,et al. The Grothendieck-Lefschetz theorem for normal projective varieties , 2005 .
[7] S. Kleiman. Toward a numerical theory of ampleness , 1966 .
[8] Melvin Hochster,et al. Prime ideal structure in commutative rings , 1969 .
[9] Alena Pirutka,et al. Families of disjoint divisors on varieties , 2015, 1504.05534.
[10] A. Grothendieck,et al. Étude locale des schémas et des morphismes de schémas , 1964 .
[11] Laurent Lafforgue,et al. Chirurgie des grassmanniennes , 2003 .
[12] Max Lieblich,et al. Topological reconstruction theorems for varieties , 2020, 2003.04847.
[13] R. Wiegand,et al. Projective surfaces over a finite field , 1981 .
[14] B. Poonen. Points Having the Same Residue Field as Their Image under a Morphism , 2001 .
[15] B. Bhatt. Annihilating the cohomology of group schemes , 2011, 1109.2383.