Direct solution of a type of constrained fractional variational problems via an adaptive pseudospectral method

This paper presents an adaptive Legendre-Gauss pseudospectral method for solving a type of constrained fractional variational problems (FVPs). The fractional derivative is defined in the Caputo sense. In the presented method, by dividing the domain of the problem into a uniform mesh the given FVP reduces to a nonlinear mathematical programming problem, and there is no need to solve the complicated fractional Euler-Lagrange equations. The method developed in this paper adjusts both the mesh spacing and the number of collocation points on each subinterval in order to improve the accuracy. The method is easy to implement and yields very accurate results. Some error estimates and convergence properties of the method are discussed. Numerical examples are included to confirm the efficiency and convergence of the proposed method.

[1]  L. Elsgolts Differential Equations and the Calculus of Variations , 2003 .

[2]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[3]  Delfim F. M. Torres,et al.  Discrete direct methods in the fractional calculus of variations , 2012, Comput. Math. Appl..

[4]  Ishak Hashim,et al.  Pseudospectral methods based on nonclassical orthogonal polynomials for solving nonlinear variational problems , 2014, Int. J. Comput. Math..

[5]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[6]  Ishak Hashim,et al.  Adaptive pseudospectral methods for solving constrained linear and nonlinear time-delay optimal control problems , 2014, J. Frankl. Inst..

[7]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[8]  Richard Askey,et al.  Mean convergence of orthogonal series and Lagrange interpolation , 1972 .

[9]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[10]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[11]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[12]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[13]  Mohammad Maleki,et al.  A numerical solution of problems in calculus of variation using direct method and nonclassical parameterization , 2010, J. Comput. Appl. Math..

[14]  Stefan Hildebrandt,et al.  Partial Differential Equations and Calculus of Variations , 1989 .

[15]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[16]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[17]  Saeid Abbasbandy,et al.  An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems , 2012 .

[18]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[19]  Aiguo Xiao,et al.  Fractional variational integrators for fractional Euler-Lagrange equations with holonomic constraints , 2013, Commun. Nonlinear Sci. Numer. Simul..

[20]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[21]  Om P. Agrawal,et al.  A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus , 2011 .

[22]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[23]  Delfim F. M. Torres,et al.  Fractional order optimal control problems with free terminal time , 2013, 1302.1717.

[24]  O. Agrawal A general finite element formulation for fractional variational problems , 2008 .

[25]  A discrete time method to the first variation of fractional order variational functionals , 2013, 1305.1859.

[26]  S. A. Yousefi,et al.  A numerical technique for solving a class of fractional variational problems , 2013, J. Comput. Appl. Math..

[27]  Delfim F. M. Torres,et al.  Approximation of fractional integrals by means of derivatives , 2012, Comput. Math. Appl..

[28]  Om Prakash Agrawal,et al.  Generalized Variational Problems and Euler-Lagrange equations , 2010, Comput. Math. Appl..

[29]  Agnieszka B. Malinowska,et al.  Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics , 2012, 1203.1961.

[30]  Delfim F. M. Torres,et al.  Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..

[31]  Delfim F. M. Torres,et al.  Fractional variational problems depending on indefinite integrals , 2011, 1102.3360.

[32]  Vladimir Tikhomirov,et al.  Stories about maxima and minima , 1990 .

[33]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[34]  Gamal N. Elnagar,et al.  Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems , 1998 .

[35]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[36]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[37]  L. Bourdin,et al.  Variational integrator for fractional Euler–Lagrange equations , 2011, 1103.0465.

[38]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[40]  Zoran D. Jelicic,et al.  Optimality conditions and a solution scheme for fractional optimal control problems , 2009 .

[41]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[42]  Ben-yu Guo,et al.  Legendre–Gauss collocation methods for ordinary differential equations , 2009, Adv. Comput. Math..

[43]  Dumitru Baleanu,et al.  Generalized variational calculus in terms of multi-parameters fractional derivatives , 2011 .

[44]  Paul T. Boggs,et al.  A Global Convergence Analysis of an Algorithm for Large-Scale Nonlinear Optimization Problems , 1999, SIAM J. Optim..

[45]  Malgorzata Klimek,et al.  Fractional sequential mechanics — models with symmetric fractional derivative , 2001 .

[46]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[47]  Delfim F. M. Torres,et al.  Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..

[48]  Mohsen Razzaghi,et al.  Rationalized Haar approach for nonlinear constrained optimal control problems , 2010 .

[49]  Delfim F. M. Torres,et al.  Numerical approximations of fractional derivatives with applications , 2012, 1208.2588.

[50]  Mehdi Dehghan,et al.  Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions , 2011, Comput. Math. Appl..

[51]  Aiguo Xiao,et al.  Fractional variational integrators for fractional variational problems , 2012 .

[52]  L. Trefethen Spectral Methods in MATLAB , 2000 .