Microstructure and Properties of the Ferroelectric-Ferromagnetic PLZT-Ferrite Composites

The paper presents the technology of ferroelectric-ferromagnetic ceramic composites obtained from PLZT powder (the chemical formula Pb0.98La0.02(Zr0.90Ti0.10)0.995O3) and ferrite powder (Ni0.64Zn0.36Fe2O4), as well as the results of X-ray powder-diffraction data (XRD) measurement, microstructure, dielectric, ferroelectric, and magnetic properties of the composite samples. The ferroelectric-ferromagnetic composite (P-F) was obtained by mixing and the synthesis of 90% of PLZT and 10% of ferrite powders. The XRD test of the P-F composite shows a two-phase structure derived from the PLZT component (strong peaks) and the ferrite component (weak peaks). The symmetry of PLZT was identified as a rhombohedral ferroelectric phase, while the ferrite was identified as a spinel structure. Scanning electron microscope (SEM) microstructure analysis of the P-F ceramic composites showed that fine grains of the PLZT component surrounded large ferrite grains. At room temperature P-F composites exhibit both ferroelectric and ferromagnetic properties. The P-F composite samples have lower values of the maximum dielectric permittivity at the Curie temperature and a higher dielectric loss compared to the PLZT ceramics, however, the exhibit overall good multiferroic properties.

[1]  A. Garg,et al.  Multiferroic Memories , 2014 .

[2]  D. Bochenek,et al.  Influence of the sintering conditions on the physical proprieties of the ceramic PFN multiferroics , 2010 .

[3]  V. Petrov,et al.  Modeling of Magnetoelectric Interaction in Magnetostrictive-Piezoelectric Composites , 2012 .

[4]  J. Ilczuk,et al.  The Internal Friction and the Relaxation Time Spectrum of Ferroelectric Ceramic PZT Type , 2008 .

[5]  R. Skulski,et al.  Electromechanical properties of PLZT x/90/10 , 2008 .

[6]  Yuhuan Xu,et al.  Ferroelectric Materials and Their Applications , 2023, Japanese Journal of Applied Physics.

[7]  E. Dagotto,et al.  Microscopic mechanisms for improper ferroelectricity in multiferroic perovskites: a theoretical review , 2008 .

[8]  D. Bochenek,et al.  Ferroelectric and magnetic properties of the PMN-PT-nickel zinc ferrite multiferroic ceramic composite materials , 2015 .

[9]  M. Adamczyk,et al.  Dielectric properties of neodymium-modified PLZT ceramics , 2015 .

[10]  D. Szwagierczak,et al.  Magnetic, magnetoelectric and dielectric behavior of CoFe2O4–Pb(Fe1/2Nb1/2)O3 particulate and layered composites , 2012 .

[11]  L. Mitoseriu,et al.  Preparation and properties of La doped PZT 90/10 ceramics across the ferroelectric–antiferroelectric phase boundary , 2015 .

[12]  D. Szwagierczak,et al.  Multiferroic Cobalt Ferrite-Lead Iron Tungstate Composites , 2012 .

[13]  D. Bochenek,et al.  The Determination of the Magnetoelectric Coupling Coefficient in Ferroelectric–Ferromagnetic Composite Based on PZT–Ferrite , 2013 .

[14]  P. Kužel,et al.  Ultrabroadband dielectric spectroscopy and phonons in (Pb1-x/2Lax)(Zr0.9Ti0.1)O3 , 2010 .

[15]  D. Bochenek Magnetic and ferroelectric properties of PbFe1/2Nb1/2O3 synthesized by a solution precipitation method , 2010 .

[16]  J. Pisarska,et al.  Pr3+/Yb3+:PLZT ferroelectric ceramics for near‐infrared radiation at 1340 nm , 2017 .

[17]  H. Schmid Some symmetry aspects of ferroics and single phase multiferroics* , 2008 .

[18]  O. Caltun,et al.  Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite–barium titanate composites , 2011 .

[19]  J. Erhart,et al.  Application testing of Sr doping effect of PZT ceramics on the piezoelectric transformer gain and efficiency proposed for MEMS actuators driving , 2012, Journal of Electroceramics.

[20]  P. Wawrzała,et al.  Charge-Discharge Properties of PLZT x/90/10 Ceramics , 2013 .

[21]  B. Wodecka-Duś,et al.  The Multicomponent PZT-type Ceramics for Micromechatronic Applications , 2017 .

[22]  G. Ziółkowski,et al.  Magnetic and electric properties of the lead free ceramic composite based on the BFN and ferrite powders , 2014 .

[23]  Dariusz Bochenek,et al.  Ferroelectric-Ferromagnetic Ceramic Composites Based on PZT with Added Ferrite , 2015 .

[24]  C. Mak,et al.  Impedance spectroscopic characterization of fine-grained magnetoelectric Pb(Zr0.53Ti0.47)O3–(Ni0.5Zn0.5)Fe2O4 ceramic composites , 2012 .

[25]  J. Scott Applications of magnetoelectrics , 2012 .

[26]  Jungho Ryu,et al.  Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials , 2002 .

[27]  J. Bartkowska The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite , 2015 .

[28]  Y. Ko,et al.  Effect of pressure on electric generation of PZT(30/70) and PZT(52/48) ceramics near phase transition pressure , 2012 .

[29]  Jingkun Guo,et al.  Mechanical and electrical properties of small amount of oxides reinforced PZT ceramics , 2003 .

[30]  Jiangyu Li,et al.  The effective magnetoelectric coefficients of polycrystalline multiferroic composites , 2005 .

[31]  Z. Ren,et al.  Multiferroicity — The Coupling Between Magnetic and Polarization Orders , 2010 .

[32]  D. Khomskii,et al.  Classifying multiferroics: Mechanisms and effects , 2009 .

[33]  E. Jartych,et al.  Compositional dependence of hyperfine interactions and magnetoelectric coupling in (BiFeO3)x-(BaTiO3)1–x solid solutions , 2017 .

[34]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[35]  B. Gröger,et al.  Investigations of properties of ceramic materials with perovskite structure in chosen electronic applications , 2007 .

[36]  M. Kosec,et al.  A- and B-compensated PLZT x/90/10: Sintering and microstructural analysis , 2007 .