Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case

We consider the problem of finding an optimal transport plan between an absolutely continuous measure and a finitely supported measure of the same total mass when the transport cost is the unsquared Euclidean distance. We may think of this problem as closest distance allocation of some resource continuously distributed over Euclidean space to a finite number of processing sites with capacity constraints. This article gives a detailed discussion of the problem, including a comparison with the much better studied case of squared Euclidean cost. We present an algorithm for computing the optimal transport plan, which is similar to the approach for the squared Euclidean cost by Aurenhammer et al. (Algorithmica 20(1):61–76, 1998) and Mérigot (Comput Graph Forum 30(5):1583–1592, 2011). We show the necessary results to make the approach work for the Euclidean cost, evaluate its performance on a set of test cases, and give a number of applications. The later include goodness-of-fit partitions, a novel visual tool for assessing whether a finite sample is consistent with a posited probability density.

[1]  Jason Altschuler,et al.  Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.

[2]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[3]  Mariette Yvinec,et al.  Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.

[4]  G. Wolansky Semi-Discrete approximation of Optimal Mass Transport , 2015, 1502.04309.

[5]  Bernhard Schmitzer,et al.  A Framework for Wasserstein-1-Type Metrics , 2017, ArXiv.

[6]  F. Santambrogio One-dimensional issues , 2015 .

[7]  E. Barrio,et al.  Central limit theorems for empirical transportation cost in general dimension , 2017, The Annals of Probability.

[8]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[9]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[10]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[11]  C. Jimenez,et al.  Optimum and equilibrium in a transport problem with queue penalization effect , 2008, 0811.1939.

[12]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[13]  Brian Wyvill,et al.  Robust iso-surface tracking for interactive character skinning , 2014, ACM Trans. Graph..

[14]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[15]  Leonidas J. Guibas,et al.  Earth mover's distances on discrete surfaces , 2014, ACM Trans. Graph..

[16]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[17]  Bernhard Schmitzer,et al.  Semi-discrete unbalanced optimal transport and quantization , 2018, 1808.01962.

[18]  Joseph S. B. Mitchell,et al.  On the Continuous Fermat-Weber Problem , 2005, Oper. Res..

[19]  Jonas Kahn,et al.  Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure , 2018, Numerische Mathematik.

[20]  Soheil Kolouri,et al.  Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry , 2014, Proceedings of the National Academy of Sciences.

[21]  Marco Scarsini,et al.  Competing over a finite number of locations , 2016 .

[22]  Jean-Luc Starck,et al.  Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning , 2017, SIAM J. Imaging Sci..

[23]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[24]  Gabriel Peyré,et al.  Convolutional wasserstein distances , 2015, ACM Trans. Graph..

[25]  L. Kantorovich On the Translocation of Masses , 2006 .

[26]  Valentin N. Hartmann A Geometry-Based Approach for Solving the Transportation Problem with Euclidean Cost , 2017, 1706.07403.

[27]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[28]  Max Sommerfeld,et al.  Inference for empirical Wasserstein distances on finite spaces , 2016, 1610.03287.

[29]  Justo Puerto,et al.  On Location-Allocation Problems for Dimensional Facilities , 2018, Journal of Optimization Theory and Applications.

[30]  Leon Cooper,et al.  The Transportation-Location Problem , 1972, Oper. Res..

[31]  A. Pratelli,et al.  On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation , 2007 .

[32]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[33]  Gabriel Peyré,et al.  Learning Generative Models with Sinkhorn Divergences , 2017, AISTATS.

[34]  Carsten Gottschlich,et al.  DOTmark – A Benchmark for Discrete Optimal Transport , 2016, IEEE Access.

[35]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[36]  C. Villani Optimal Transport: Old and New , 2008 .

[37]  MunkAxel,et al.  Limit laws of the empirical Wasserstein distance , 2016 .

[38]  Günter Rote,et al.  Optimally solving a transportation problem using Voronoi diagrams , 2012, Comput. Geom..

[39]  Bernhard Schmitzer,et al.  A Sparse Multiscale Algorithm for Dense Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.

[40]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[41]  Gabriel Peyré,et al.  Fast Optimal Transport Averaging of Neuroimaging Data , 2015, IPMI.

[42]  Axel Munk,et al.  Empirical Regularized Optimal Transport: Statistical Theory and Applications , 2018, SIAM J. Math. Data Sci..

[43]  Axel Munk,et al.  Limit laws of the empirical Wasserstein distance: Gaussian distributions , 2015, J. Multivar. Anal..

[44]  Siam Rfview,et al.  CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .

[45]  M. Beckmann A Continuous Model of Transportation , 1952 .

[46]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[47]  Hanif D. Sherali,et al.  NP-Hard, Capacitated, Balanced p-Median Problems on a Chain Graph with a Continuum of Link Demands , 1988, Math. Oper. Res..

[48]  Nicolas Courty,et al.  Wasserstein discriminant analysis , 2016, Machine Learning.

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[50]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[51]  N. Papadakis Optimal Transport for Image Processing , 2015 .

[52]  Kevin A. Henry,et al.  A Nationwide Comparison of Driving Distance Versus Straight-Line Distance to Hospitals , 2012, The Professional geographer : the journal of the Association of American Geographers.

[53]  Nicolas Courty,et al.  Optimal transport for data fusion in remote sensing , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[54]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[55]  Peter Filzmoser,et al.  A comparison of algorithms for the multivariate L1-median , 2010, Comput. Stat..

[56]  Zongxu Pan,et al.  Automatic Color Correction for Multisource Remote Sensing Images with Wasserstein CNN , 2017, Remote. Sens..

[57]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[58]  Quentin Mérigot,et al.  A Newton algorithm for semi-discrete optimal transport , 2016, ArXiv.