Brain activation studies on visual-vestibular and ocular motor interaction.

Despite their different sensorimotor functions, saccades, pursuit eye movements, small-field optokinetic nystagmus and visual motion stimulation with the eyes stationary evoke a common complex pattern of activation in various cortical, basal ganglia, brain-stem and cerebellar areas. On closer inspection, however, typical subregions can be delineated that allow differentiation of adjacent but separate loci for specific functions (e.g. the separation of the two parallel corticocortical systems to control saccades and pursuit in the cortical eye fields). It is becoming increasingly clear that stimulation of one sensory system affects other sensory systems, and generally this is via an inhibitory reciprocal mode of interaction. For example, vestibular stimulation deactivates the visual cortex and visual stimulation deactivates the vestibular cortex.

[1]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[2]  M. Mintun,et al.  Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. , 1996, Journal of neurophysiology.

[3]  M. Wiesmann,et al.  Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation , 1998, Annals of neurology.

[4]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[5]  U. W. Buettner,et al.  Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation , 1978, Brain Research.

[6]  J V Haxby,et al.  Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. , 1997, Journal of neurophysiology.

[7]  J. Lynch,et al.  Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. , 1996, Journal of neurophysiology.

[8]  W. McIlroy,et al.  SENSORI-SENSORY AFFERENT CONDITIONING WITH LEG MOVEMENT: GAIN CONTROL IN SPINAL REFLEX AND ASCENDING PATHS , 1997, Progress in Neurobiology.

[9]  M Dieterich,et al.  Vestibular cortex lesions affect the perception of verticality , 1994, Annals of neurology.

[10]  S. Faugier-Grimaud,et al.  Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo‐ocular function in a monkey (macaca fascicularis) , 1989, The Journal of comparative neurology.

[11]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[13]  E A Cabanis,et al.  Location of the human posterior eye field with functional magnetic resonance imaging. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[14]  W. Bles,et al.  Differential effects of ambivalent visual-vestibular-somatosensory stimulation on the perception of self-motion , 1985, Behavioural Brain Research.

[15]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[16]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[18]  G A Orban,et al.  Human cerebral activity evoked by motion reversal and motion onset. A PET study. , 1998, Brain : a journal of neurology.

[19]  W. Oertel,et al.  Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades , 1997, Neurology.

[20]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[21]  G A Orban,et al.  Human brain regions involved in direction discrimination. , 1998, Journal of neurophysiology.

[22]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[23]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[24]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[25]  A. Crawley,et al.  Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception , 1996, Annals of neurology.

[26]  H. Burton,et al.  Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates , 1976, The Journal of comparative neurology.

[27]  O J Grüsser,et al.  Localization and responses of neurones in the parieto‐insular vestibular cortex of awake monkeys (Macaca fascicularis). , 1990, The Journal of physiology.

[28]  A. Berthoz,et al.  Functional MRI of galvanic vestibular stimulation. , 1998, Journal of neurophysiology.

[29]  J. Lynch,et al.  Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. , 1996, Journal of neurophysiology.

[30]  M Dieterich,et al.  Cerebellar activation during optokinetic stimulation and saccades , 2000, Neurology.

[31]  C. G. Phillips,et al.  Projection from low‐threshold muscle afferents of hand and forearm to area 3a of baboon's cortex , 1971, The Journal of physiology.

[32]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[33]  B. J. McCurtain,et al.  Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. , 1998, Cerebral cortex.

[34]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[35]  C. Bruce,et al.  Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. , 1994, Journal of neurophysiology.

[36]  C. Bruce,et al.  Smooth eye movements elicited by microstimulation in the primate frontal eye field. , 1993, Journal of neurophysiology.

[37]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[38]  Bernard H. Smith Vestibular disturbances in epilepsy , 1960, Neurology.

[39]  A Weindl,et al.  Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. , 1996, Brain : a journal of neurology.

[40]  P. Goldman-Rakic,et al.  Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. , 1996, Cerebral cortex.

[41]  Ravi S. Menon,et al.  Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. , 1999, Journal of neurophysiology.

[42]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[43]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[44]  H. Ades,et al.  A composite sensory projection area in the cerebral cortex of the cat. , 1952, The American journal of physiology.

[45]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[46]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[47]  S Zeki,et al.  The brain activity related to residual motion vision in a patient with bilateral lesions of V5. , 1994, Brain : a journal of neurology.

[48]  Kenji Kawano,et al.  Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey , 1980, Neuroscience Letters.

[49]  A. Prochazka,et al.  Muscular sense is attenuated when humans move , 1998, The Journal of physiology.

[50]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.