Design of a Rapid Thermal Processing System Using a Reflection-Resolved Ray Tracing Method

The thermal condition of a silicon substrate in a rapid thermal processing system using circular infrared lamps and specular reflectors is systematically studied based on the direct approach model using a ray trace simulation with resolving the number of reflections, for the first time, in order to clarify the mechanism that the thermal condition for the silicon substrate is not sensitive to the distance between the circular infrared lamp and the reflector base plate forming the region behind the circular infrared lamp Since total reflection from the specular reflectors behind the circular infrared lamp causes no energy loss on their surface, the intensity of the ray emitted from the infrared lamp toward the reflector base plate can be maintained and transported to the silicon substrate surface, even if the distance between the circular infrared lamp and the reflector base plate influences the path of the rays which are approaching the silicon substrate. Therefore, it is concluded that the thermal condition of the silicon substrate can be robust to the geometry of the specular reflectors behind the circular infrared lamp.

[1]  H. A. Lord Thermal and stress analysis of semiconductor wafers in a rapid thermal processing oven , 1988 .

[2]  Andrew S. Glassner,et al.  Space subdivision for fast ray tracing , 1984, IEEE Computer Graphics and Applications.

[3]  S. Hu Temperature Distribution and Stresses in Circular Wafers in a Row During Radiative Cooling , 1969 .

[4]  L. Fried,et al.  Spacecraft thermal modelling , 1992 .

[5]  J. V. Cole,et al.  Nonlinear model reduction strategies for rapid thermal processing systems , 1998 .

[6]  Hitoshi Habuka,et al.  Nonlinear increase in silicon epitaxial growth rate in a SiHCl3H2 system under atmospheric pressure , 1997 .

[7]  Tsutomu Satō,et al.  Spectral Emissivity of Silicon , 1967 .

[8]  Patrick J. Burns,et al.  PERFORMANCE, ACCURACY, AND CONVERGENCE IN A THREE-DIMENSIONAL MONTE CARLO RADIATIVE HEAT TRANSFER SIMULATION , 1991 .

[9]  Hitoshi Habuka,et al.  Thermal Conditions in Rapid Thermal Processing System Using Circular Infrared Lamp , 2000 .

[10]  M. Kimura Thirty years of population genetics with Dr. Crow. , 1988, Idengaku zasshi.

[11]  THREE-DIMENSIONAL RADIATIVE EXCHANGE FACTORS FOR NONGRAY, NONDIFFUSE SURFACES , 1978 .

[12]  F. Durst,et al.  Advanced mathematical models for simulation of radiative heat transfer in CVD reactors , 1997 .

[13]  K. Okuyama,et al.  Numerical Evaluation of Silicon-Thin Film Growth from SiHCl3-H2 Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor. , 1994 .

[14]  F. Roozeboom,et al.  Rapid Thermal Processing: Status, Problems and Options After the First 25 Years , 1993 .

[15]  Klavs F. Jensen,et al.  A Systematic Approach to Simulating Rapid Thermal Processing Systems , 1996 .

[16]  P. Timans The Role of Thermal Radiative Properties of Semiconductor Wafers in Rapid Thermal Processing , 1996 .

[17]  J. Nulman,et al.  Observation of silicon wafer emissivity in rapid thermal processing chambers for pyrometric temperature monitoring , 1990 .

[18]  T. Schafbauer,et al.  Thermal modelling of RTP and RTCVD processes , 2000 .

[19]  Ching-An Lin,et al.  Lamp configuration design for rapid thermal processing systems , 1998 .

[20]  Victor E. Borisenko,et al.  Rapid Thermal Processing of Semiconductors , 1997 .

[21]  Ikuo Matsuba,et al.  Transient model of wafer temperature in a furnace for semiconductor fabrication process , 1986 .

[22]  A. Slaoui,et al.  Modeling and Analysis of the Silicon Epitaxial Growth with SiHCl3 in a Horizontal Rapid Thermal Chemical Vapor Deposition Reactor , 1997 .

[23]  Modeling of three-dimensional effects on temperature uniformity in rapid thermal processing of eight inch wafers , 1994 .

[24]  G. Schwuttke,et al.  Silicon diodes made by laser irradiation , 1968 .

[25]  Hitoshi Habuka,et al.  Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3H2 system under atmospheric pressure , 1996 .

[26]  J. V. Cole,et al.  Monte Carlo Simulation of Radiative Heat Transfer in Rapid Thermal Processing (RTP) Systems , 1994 .

[27]  G. M. Wilson,et al.  A Theoretical/Experimental Study of Silicon Epitaxy in Horizontal Single‐Wafer Chemical Vapor Deposition Reactors , 2000 .

[28]  E. Zafiriou,et al.  Model reduction for optimization of rapid thermal chemical vapor deposition systems , 1998 .