Sentinel-2 Sharpening via Parallel Residual Network

[1]  Konrad Schindler,et al.  Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[2]  Jim. Vrabel,et al.  Multispectral imagery band sharpening study , 1996 .

[3]  Gang Li,et al.  Change Detection in Heterogenous Remote Sensing Images via Homogeneous Pixel Transformation , 2018, IEEE Transactions on Image Processing.

[4]  Wenzhong Shi,et al.  Fusion of Sentinel-2 images , 2016 .

[5]  Naoto Yokoya,et al.  Hyperspectral Pansharpening: A Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[6]  Stefania Matteoli,et al.  Automatic Target Recognition Within Anomalous Regions of Interest in Hyperspectral Images , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Hassan Ghassemian,et al.  Incorporating an Adaptive Image Prior Model Into Bayesian Fusion of Multispectral and Panchromatic Images , 2018, IEEE Geoscience and Remote Sensing Letters.

[8]  Jonathan Cheung-Wai Chan,et al.  Hyperspectral and Multispectral Image Fusion via Deep Two-Branches Convolutional Neural Network , 2018, Remote. Sens..

[9]  Jocelyn Chanussot,et al.  A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Severino G. Salmo,et al.  Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery , 2017 .

[11]  Nicolas Brodu,et al.  Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Xiaodong Li,et al.  Water Bodies' Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band , 2016, Remote. Sens..

[13]  Bruno Aiazzi,et al.  Improving Component Substitution Pansharpening Through Multivariate Regression of MS $+$Pan Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Daniel Simpson,et al.  REMAP: An online remote sensing application for land cover classification and monitoring , 2017, bioRxiv.

[15]  Hongyi Liu,et al.  A New Pan-Sharpening Method With Deep Neural Networks , 2015, IEEE Geoscience and Remote Sensing Letters.

[16]  Liangpei Zhang,et al.  A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Gordana Kaplan,et al.  Sentinel-2 Pan Sharpening—Comparative Analysis , 2018 .

[18]  Johannes R. Sveinsson,et al.  Sentinel-2 Image Fusion Using a Deep Residual Network , 2018, Remote. Sens..

[19]  Remo Bertani,et al.  Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[20]  M. Gašparović,et al.  The effect of fusing Sentinel-2 bands on land-cover classification , 2018 .

[21]  Ming Cheng,et al.  Sparse Representation Based Pansharpening Using Trained Dictionary , 2014, IEEE Geoscience and Remote Sensing Letters.

[22]  Xiao Xiang Zhu,et al.  The SEN1-2 Dataset for Deep Learning in SAR-Optical Data Fusion , 2018, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[23]  Xiangtao Zheng,et al.  Hyperspectral Image Superresolution by Transfer Learning , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[25]  Davide Cozzolino,et al.  Pansharpening by Convolutional Neural Networks , 2016, Remote. Sens..

[26]  Pierre Defourny,et al.  Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems , 2018, Remote Sensing of Environment.

[27]  Giuseppe Scarpa,et al.  Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks , 2019, Remote. Sens..

[28]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[29]  Johannes R. Sveinsson,et al.  Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network , 2017, IEEE Geoscience and Remote Sensing Letters.

[30]  Jocelyn Chanussot,et al.  Improving MODIS Spatial Resolution for Snow Mapping Using Wavelet Fusion and ARSIS Concept , 2008, IEEE Geoscience and Remote Sensing Letters.

[31]  Johannes R. Sveinsson,et al.  Sentinel-2 Sharpening Using a Reduced-Rank Method , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[33]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[34]  Jaewan Choi,et al.  Sharpening the VNIR and SWIR Bands of Sentinel-2A Imagery through Modified Selected and Synthesized Band Schemes , 2017, Remote. Sens..