Necessary and sufficient conditions for the identifiability of observation‐driven models

In this contribution we are interested in proving that a given observation‐driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in Berkes I, Horváth L, Kokoszka P. (2003). Bernoulli 9: 201–227 for showing the consistency of the quasi‐maximum likelihood estimator. It turns out that this condition applies for a much larger class of observation‐driven models, that we call the class of linearly observation‐driven models. This class includes standard integer valued observation‐driven time series such as the Poisson autoregression model and its numerous extensions. Our results also apply to vector‐valued time series such as the bivariate integer valued GARCH model, to nonlinear models such as the threshold Poisson autoregression or to observation‐driven models with exogenous covariates such as the PARX model.

[1]  François Roueff,et al.  General-order observation-driven models: Ergodicity and consistency of the maximum likelihood estimator , 2021, Electronic Journal of Statistics.

[2]  Rodrigo B. Silva,et al.  Flexible and Robust Mixed Poisson INGARCH Models , 2019, Journal of Time Series Analysis.

[3]  Fukang Zhu,et al.  A new bivariate integer-valued GARCH model allowing for negative cross-correlation , 2018 .

[4]  D. Tjøstheim,et al.  Asymptotic normality and parameter change test for bivariate Poisson INGARCH models , 2018 .

[5]  Trevelyan J. McKinley,et al.  Model selection for time series of count data , 2018, Comput. Stat. Data Anal..

[6]  Roland Fried,et al.  tscount: An R package for analysis of count time series following generalized linear models , 2017 .

[7]  Anders Rahbek,et al.  Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX) , 2016 .

[8]  Tepmony Sim,et al.  Maximum likelihood estimation in partially observed Markov models with applications to time series of counts , 2016 .

[9]  Dag Tjøstheim,et al.  Count Time Series with Observation-Driven Autoregressive Parameter Dynamics , 2015 .

[10]  R. Douc,et al.  Handy sufficient conditions for the convergence of the maximum likelihood estimator in observation-driven models , 2015, 1506.01831.

[11]  Konstantinos Fokianos,et al.  On count time series prediction , 2015 .

[12]  Wai Keung Li,et al.  Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.

[13]  K. Bhaskaran,et al.  Time series regression studies in environmental epidemiology , 2013, International journal of epidemiology.

[14]  Fukang Zhu,et al.  Modeling time series of counts with COM-Poisson INGARCH models , 2012, Math. Comput. Model..

[15]  Fukang Zhu Zero-inflated Poisson and negative binomial integer-valued GARCH models , 2012 .

[16]  Konstantinos Fokianos,et al.  Log-linear Poisson autoregression , 2011, J. Multivar. Anal..

[17]  Fukang Zhu A negative binomial integer‐valued GARCH model , 2010 .

[18]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .

[19]  Tim Bollerslev,et al.  Glossary to ARCH (GARCH) , 2008 .

[20]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[21]  T. Mikosch,et al.  Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach , 2006, math/0702692.

[22]  J. Zakoian,et al.  Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .

[23]  J. Richard,et al.  Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .

[24]  S. Carpenter,et al.  ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .

[25]  Piotr Kokoszka,et al.  GARCH processes: structure and estimation , 2003 .

[26]  D. Rubinfeld,et al.  Econometric models and economic forecasts , 2002 .

[27]  P. Bougerol,et al.  Stationarity of Garch processes and of some nonnegative time series , 1992 .

[28]  B. Leroux Maximum-likelihood estimation for hidden Markov models , 1992 .

[29]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[30]  S. Zeger A regression model for time series of counts , 1988 .

[31]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[32]  Konstantinos Fokianos,et al.  Estimation and testing linearity for non-linear mixed poisson autoregressions , 2015 .

[33]  Heng Liu Some Models for Time Series of Counts , 2012 .

[34]  J. Zakoian,et al.  Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processes , 2011 .

[35]  Alexander Lindner,et al.  Stationarity, Mixing, Distributional Properties and Moments of GARCH(p, q)-Processes , 2009 .

[36]  J. Zakoian,et al.  A Tour in the Asymptotic Theory of GARCH Estimation , 2009 .

[37]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[38]  Bnp Paribas,et al.  Dynamics of trade-by-trade price movements : decomposition and models , 1998 .

[39]  C. C. Macduffee,et al.  The Theory of Matrices , 1933 .