Necessary and sufficient conditions for the identifiability of observation‐driven models
暂无分享,去创建一个
[1] François Roueff,et al. General-order observation-driven models: Ergodicity and consistency of the maximum likelihood estimator , 2021, Electronic Journal of Statistics.
[2] Rodrigo B. Silva,et al. Flexible and Robust Mixed Poisson INGARCH Models , 2019, Journal of Time Series Analysis.
[3] Fukang Zhu,et al. A new bivariate integer-valued GARCH model allowing for negative cross-correlation , 2018 .
[4] D. Tjøstheim,et al. Asymptotic normality and parameter change test for bivariate Poisson INGARCH models , 2018 .
[5] Trevelyan J. McKinley,et al. Model selection for time series of count data , 2018, Comput. Stat. Data Anal..
[6] Roland Fried,et al. tscount: An R package for analysis of count time series following generalized linear models , 2017 .
[7] Anders Rahbek,et al. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX) , 2016 .
[8] Tepmony Sim,et al. Maximum likelihood estimation in partially observed Markov models with applications to time series of counts , 2016 .
[9] Dag Tjøstheim,et al. Count Time Series with Observation-Driven Autoregressive Parameter Dynamics , 2015 .
[10] R. Douc,et al. Handy sufficient conditions for the convergence of the maximum likelihood estimator in observation-driven models , 2015, 1506.01831.
[11] Konstantinos Fokianos,et al. On count time series prediction , 2015 .
[12] Wai Keung Li,et al. Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.
[13] K. Bhaskaran,et al. Time series regression studies in environmental epidemiology , 2013, International journal of epidemiology.
[14] Fukang Zhu,et al. Modeling time series of counts with COM-Poisson INGARCH models , 2012, Math. Comput. Model..
[15] Fukang Zhu. Zero-inflated Poisson and negative binomial integer-valued GARCH models , 2012 .
[16] Konstantinos Fokianos,et al. Log-linear Poisson autoregression , 2011, J. Multivar. Anal..
[17] Fukang Zhu. A negative binomial integer‐valued GARCH model , 2010 .
[18] J. Zakoian,et al. GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .
[19] Tim Bollerslev,et al. Glossary to ARCH (GARCH) , 2008 .
[20] Alain Latour,et al. Integer‐Valued GARCH Process , 2006 .
[21] T. Mikosch,et al. Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach , 2006, math/0702692.
[22] J. Zakoian,et al. Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .
[23] J. Richard,et al. Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .
[24] S. Carpenter,et al. ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .
[25] Piotr Kokoszka,et al. GARCH processes: structure and estimation , 2003 .
[26] D. Rubinfeld,et al. Econometric models and economic forecasts , 2002 .
[27] P. Bougerol,et al. Stationarity of Garch processes and of some nonnegative time series , 1992 .
[28] B. Leroux. Maximum-likelihood estimation for hidden Markov models , 1992 .
[29] E. Hannan,et al. The statistical theory of linear systems , 1989 .
[30] S. Zeger. A regression model for time series of counts , 1988 .
[31] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[32] Konstantinos Fokianos,et al. Estimation and testing linearity for non-linear mixed poisson autoregressions , 2015 .
[33] Heng Liu. Some Models for Time Series of Counts , 2012 .
[34] J. Zakoian,et al. Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processes , 2011 .
[35] Alexander Lindner,et al. Stationarity, Mixing, Distributional Properties and Moments of GARCH(p, q)-Processes , 2009 .
[36] J. Zakoian,et al. A Tour in the Asymptotic Theory of GARCH Estimation , 2009 .
[37] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[38] Bnp Paribas,et al. Dynamics of trade-by-trade price movements : decomposition and models , 1998 .
[39] C. C. Macduffee,et al. The Theory of Matrices , 1933 .