The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions

A discretization method referred to as the Quadrature Discretization Method (QDM) is introduced for the solution of the Schrodinger equation. The method has been used previously for the solution of Fokker–Planck equations. The Fokker–Planck equation can be transformed to a Schrodinger equation with a potential of the form that occurs in supersymmetric quantum mechanics. For this class of potentials, the ground state wave function is known. The QDM is based on the discretization of the wave function on a grid of points that coincide with the points of a quadrature. The quadrature is based on a set of nonclassical polynomials orthogonal with respect to a weight function determined by the potential function in the Schrodinger equation. For the Fokker–Planck operator, the weight function that provides rapid convergence of the eigenvalues are the steady distributions at infinite time, that is, the ground state wave functions. In the present paper, the weight functions used in an analogous solution of the Schro...

[1]  Bodo Erdmann,et al.  A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions , 1994 .

[2]  J. Killingbeck,et al.  Energy levels of the Schrödinger equation for some rational potentials in two-dimensional space using the inner product technique , 1994 .

[3]  Bernie D. Shizgal,et al.  Chebyshev pseudospectral multi-domain technique for viscous flow calculation , 1994 .

[4]  K. Sakimoto,et al.  Quantum mechanical calculations of collinear reactive collisions at energies above the dissociation threshold: A discrete‐variable‐representation approach , 1994 .

[5]  J. F. Ogilvie,et al.  Potential-energy functions of diatomic molecules of the noble gases , 1993 .

[6]  G. Groenenboom,et al.  Solving the discretized time‐independent Schrödinger equation with the Lanczos procedure , 1990 .

[7]  Tipping,et al.  Eigenvalues of the Schrödinger equation via the Riccati-Padé method. , 1989, Physical review. A, General physics.

[8]  Weitao Yang,et al.  The collocation method for bound solutions of the Schrödinger equation , 1988 .

[9]  A. Khare,et al.  Supersymmetry, Shape Invariance and Exactly Solvable Potentials , 1988 .

[10]  Ronnie Kosloff,et al.  A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schrödinger equation on a grid , 1986 .

[11]  U. Weinert,et al.  Discrete ordinate solution of a Fokker-Planck equation in laser physics , 1986 .

[12]  McMahon,et al.  Electric field dependence of transient electron transport properties in rare-gas moderators. , 1985, Physical review. A, General physics.

[13]  P. Davis,et al.  Methods of Numerical Integration , 1985 .

[14]  W. Gautschi Orthogonal polynomials-Constructive theory and applications * , 1985 .

[15]  Blackmore,et al.  Discrete-ordinate method of solution of Fokker-Planck equations with nonlinear coefficients. , 1985, Physical review. A, General physics.

[16]  J. Light,et al.  Generalized discrete variable approximation in quantum mechanics , 1985 .

[17]  A. Comtet,et al.  EXACTNESS OF SEMICLASSICAL BOUND STATE ENERGIES FOR SUPERSYMMETRIC QUANTUM MECHANICS , 1985 .

[18]  H. Risken,et al.  Solutions of the Fokker-Planck equation describing the thermalization of neutrons in a heavy gas moderator , 1984 .

[19]  Bernie D. Shizgal,et al.  A discrete ordinate method of solution of linear boundary value and eigenvalue problems , 1984 .

[20]  J. S. Lew,et al.  Nonnegative solutions of a nonlinear recurrence , 1983 .

[21]  R. A. Aziz,et al.  Comparison of the predictions of literature intermolecular potentials for Ar–Xe and Kr–Xe with experiment: Two new potentials , 1983 .

[22]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[23]  Bernie D. Shizgal,et al.  A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems , 1981 .

[24]  B. Shizgal,et al.  Eigenvalues of the Boltzmann collision operator for binary gases: Mass dependence , 1981 .

[25]  Donald W. Noid,et al.  Properties of vibrational energy levels in the quasi periodic and stochastic regimes , 1980 .

[26]  Michael J Davis,et al.  Semiclassical Gaussian basis set method for molecular vibrational wave functions , 1979 .

[27]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[28]  B. Shizgal Eigenvalues of the Lorentz Fokker–Planck equation , 1979 .

[29]  Rudolph A. Marcus,et al.  Semiclassical calculation of bound states in a multidimensional system for nearly 1:1 degenerate systems , 1977 .

[30]  F. Mies Effects of Anharmonicity on Vibrational Energy Transfer , 1964 .

[31]  M. Witwit INNER PRODUCT THEORY CALCULATIONS FOR DOUBLE-WELL POTENTIALS IN TWO-DIMENSIONAL SPACE , 1995 .

[32]  M. Witwit Energy levels of double‐well potentials in a three‐dimensional system , 1995 .

[33]  Bernie D. Shizgal,et al.  On the generation of orthogonal polynomials using asymptotic methods for recurrence coefficients , 1993 .

[34]  P. Varghese,et al.  A simple model for state-specific diatomic dissociation , 1993 .

[35]  P. Nevai,et al.  Orthogonal polynomials : theory and practice , 1990 .

[36]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[37]  H. Risken Fokker-Planck Equation , 1984 .

[38]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[39]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[40]  K. Sorbie,et al.  New analytic form for the potential energy curves of stable diatomic states , 1974 .

[41]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[42]  Michael Danos,et al.  Mathematics For Quantum Mechanics , 1962 .