Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels

The olfactory system is divided into processing channels (glomeruli), each receiving input from a different type of olfactory receptor neuron (ORN). Here we investigated how glomeruli combine to control behavior in freely walking Drosophila. We found that optogenetically activating single ORN types typically produced attraction, although some ORN types produced repulsion. Attraction consisted largely of a behavioral program with the following rules: at fictive odor onset, flies walked upwind, and at fictive odor offset, they reversed. When certain pairs of attractive ORN types were co-activated, the level of the behavioral response resembled the sum of the component responses. However, other pairs of attractive ORN types produced a response resembling the larger component (max pooling). Although activation of different ORN combinations produced different levels of behavior, the rules of the behavioral program were consistent. Our results illustrate a general method for inferring how groups of neurons work together to modulate behavioral programs.

[1]  Mark A. Frye,et al.  Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight , 2009, Current Biology.

[2]  Gero Miesenböck,et al.  Odor Discrimination in Drosophila: From Neural Population Codes to Behavior , 2013, Neuron.

[3]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[4]  Liang Liang,et al.  GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons , 2013, Neuron.

[5]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[6]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[7]  Jamey S. Kain,et al.  Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila , 2012, Nature.

[8]  Tom Guda,et al.  Retraction: Odour receptors and neurons for DEET and new insect repellents , 2016, Nature.

[9]  D. G. Laing,et al.  The analysis of odor mixtures by humans: evidence for a configurational process , 2001, Physiology & Behavior.

[10]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[11]  J. Carlson,et al.  Olfactory Perception: Receptors, Cells, and Circuits , 2009, Cell.

[12]  B. Dickson,et al.  A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone , 2007, Nature.

[13]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[14]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[15]  Spatial representation of odorant valence in an insect brain. , 2012, Cell reports.

[16]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[17]  Anandasankar Ray,et al.  Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants , 2009, Nature.

[18]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[19]  David Leib,et al.  SUPPLEMENTAL EXPERIMENTAL PROCEDURES , 2012 .

[20]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[21]  Hokto Kazama,et al.  Homeostatic Matching and Nonlinear Amplification at Identified Central Synapses , 2008, Neuron.

[22]  L. Vosshall,et al.  Genetic variation in a human odorant receptor alters odour perception , 2007, Nature.

[23]  Sergi Bermdez i Badia,et al.  A high-throughput behavioral paradigm for Drosophila olfaction - The Flywalk , 2012, Scientific Reports.

[24]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[25]  J. Kennedy,et al.  The concepts of olfactory ‘arrestment’ and ‘attraction’ , 1978 .

[26]  Leslie B. Vosshall,et al.  Two chemosensory receptors together mediate carbon dioxide detection in Drosophila , 2007, Nature.

[27]  Kei Ito,et al.  Activity-Dependent Plasticity in an Olfactory Circuit , 2007, Neuron.

[28]  Johannes Felsenberg,et al.  Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila , 2015, Neuron.

[29]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[30]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[31]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[32]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[33]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[34]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[35]  Xiaojing J. Gao,et al.  Extremely Sparse Olfactory Inputs Are Sufficient to Mediate Innate Aversion in Drosophila , 2015, PloS one.

[36]  John R. Carlson,et al.  Functional diversity among sensory receptors in a Drosophila olfactory circuit , 2013, Proceedings of the National Academy of Sciences.

[37]  B. T. Bloomquist,et al.  Isolation of a putative phospholipase c gene of drosophila, norpA, and its role in phototransduction , 1988, Cell.

[38]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[39]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[40]  B. Nadler,et al.  Global Features of Neural Activity in the Olfactory System Form a Parallel Code That Predicts Olfactory Behavior and Perception , 2010, The Journal of Neuroscience.

[41]  André Fiala,et al.  Behavioral Neuroscience , 2022 .

[42]  Pavan Ramdya,et al.  Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems , 2011, The Journal of Neuroscience.

[43]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[44]  William J. Bell,et al.  Search and anemotactic orientation of cockroaches , 1979 .

[45]  M. Knaden,et al.  Compound valence is conserved in binary odor mixtures in Drosophila melanogaster , 2014, Journal of Experimental Biology.

[46]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[47]  Rachel I. Wilson,et al.  Olfactory processing and behavior downstream from highly selective receptor neurons , 2007, Nature Neuroscience.

[48]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[49]  Markus Knaden,et al.  Decoding odor quality and intensity in the Drosophila brain , 2014, eLife.

[50]  John R. Carlson,et al.  Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics , 2015 .

[51]  A. Dewan,et al.  Non-redundant coding of aversive odours in the main olfactory pathway , 2013, Nature.

[52]  Markus Knaden,et al.  A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila , 2012, Cell.

[53]  J. Devaud,et al.  Odor Exposure Causes Central Adaptation and Morphological Changes in Selected Olfactory Glomeruli in Drosophila , 2001, The Journal of Neuroscience.

[54]  Jing W. Wang,et al.  Select Drosophila glomeruli mediate innate olfactory attraction and aversion , 2009, Nature.

[55]  Vikas Bhandawat,et al.  Odor-identity dependent motor programs underlie behavioral responses to odors , 2015, eLife.

[56]  Rachel I. Wilson,et al.  Stereotyped connectivity and computations in higher-order olfactory neurons , 2013, Nature Neuroscience.

[57]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[58]  Michael H. Dickinson,et al.  Plume-Tracking Behavior of Flying Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes , 2014, Current Biology.

[59]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[60]  Michael H. Dickinson,et al.  Olfactory modulation of flight in Drosophila is sensitive, selective and rapid , 2010, Journal of Experimental Biology.

[61]  Manfred Forstreuter,et al.  Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context , 2006, Journal of Experimental Biology.

[62]  David J. Anderson,et al.  Light Activation of an Innate Olfactory Avoidance Response in Drosophila , 2007, Current Biology.

[63]  P. Duchamp-Viret,et al.  Single olfactory sensory neurons simultaneously integrate the components of an odour mixture , 2003, The European journal of neuroscience.

[64]  R. Benton,et al.  Acid sensing by the Drosophila olfactory system , 2010, Nature.

[65]  Leslie B. Vosshall,et al.  Genetic and Functional Subdivision of the Drosophila Antennal Lobe , 2005, Current Biology.

[66]  A. Pouget,et al.  Marginalization in Neural Circuits with Divisive Normalization , 2011, The Journal of Neuroscience.

[67]  Bruno Rossion,et al.  Figures and figure supplements , 2014 .

[68]  Thomas C. Baker,et al.  Balanced Olfactory Antagonism as a Concept for Understanding Evolutionary Shifts in Moth Sex Pheromone Blends , 2008, Journal of Chemical Ecology.

[69]  Gerald M. Rubin,et al.  A Higher Brain Circuit for Immediate Integration of Conflicting Sensory Information in Drosophila , 2015, Current Biology.

[70]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[71]  Dmitry Rinberg,et al.  Multiple perceptible signals from a single olfactory glomerulus , 2014, Nature Neuroscience.