Comparing shared and distributed memory computers

Abstract There are two distinct types of MIMD (Multiple Instruction, Multiple Data) computers: the shared memory machine, e.g. Butterfly, and the distributed memory machine, e.g. Hypercubes, Transputer arrays. Typically these utilize different programming models: the shared memory machine has monitors, semaphores and fetch-and-add; whereas the distributed memory machine uses message passing. Moreover there are two popular types of operating systems: a multi-tasking, asynchronous operating system and a crystalline, loosely synchronous operating system. In this paper I firstly describe the Butterfly, Hypercube and Transputer array MIMD computers, and review monitors, semaphores, fetch-and-add and message passing; then I explain the two types of operating systems and give examples of how they are implemented on these MIMD computers. Next I discuss the advantages and disadvantages of shared memory machines with monitors, semaphores and fetch-and-add, compared to distributed memory machines using message passing, answering questions such as “is one model ‘easier’ to program than the other?” and “which is ‘more efficient‘?”. One may think that a shared memory machine with monitors, semaphores and fetch-and-add is simpler to program and runs faster than a distributed memory machine using message passing but we shall see that this is not necessarily the case. Finally I briefly discuss which type of operating system to use and on which type of computer. This of course depends on the algorithm one wishes to compute.