On maximal resonance of polyomino graphs

A polyomino graph is a finite plane 2-connected bipartite graph every interior face of which is bounded by a regular square of side length one. Let k be a positive integer, a polyomino graph G is k-resonant if the deletion of any i ≤ k vertex-disjoint squares from G results in a graph either having perfect matchings or being empty. If graph G is k-resonant for any integer k ≥ 1, then it is called maximally resonant. All maximally resonant polyomino graphs are characterized in this work. As a result, the least integer k such that a k-resonant polyomino graph is maximally resonant is determined.

[1]  W. Simpson On the Use of Structures as an Aid in Understanding II-Electron Spectra , 1953 .

[2]  E. Clar The aromatic sextet , 1972 .

[3]  W. C. Herndon Resonance energies of aromatic hydrocarbons. Quantitative test of resonance theory , 1973 .

[4]  William C. Herndon,et al.  THERMOCHEMICAL PARAMETERS FOR BENZENOID HYDROCARBONS , 1974 .

[5]  M. Randic,et al.  Graph theoretical approach to local and overall aromaticity of benzenenoid hydrocarbons , 1975 .

[6]  M. Randic Conjugated circuits and resonance energies of benzenoid hydrocarbons , 1976 .

[7]  H. Hosoya,et al.  King and domino polynomials for polyomino graphs , 1977 .

[8]  M. Randic Aromaticity and conjugation , 1977 .

[9]  C. C. Chen,et al.  Combinatorial properties of polyominoes , 1981, Comb..

[10]  Kivelson Statistics of holons in the quantum hard-core dimer gas. , 1989, Physical review. B, Condensed matter.

[11]  Klein,et al.  Exact enumeration of long-range-ordered dimer coverings on the square-planar lattice. , 1990, Physical review. B, Condensed matter.

[12]  E. J. COCKAYNE,et al.  Chessboard domination problems , 1991, Discret. Math..

[13]  Horst Sachs,et al.  Counting Perfect Matchings in Lattice Graphs , 1990 .

[14]  D. Klein AROMATICITY VIA KEKULE STRUCTURES AND CONJUGATED CIRCUITS , 1992 .

[15]  Rong-si Chen,et al.  k-coverable coronoid systems , 1993 .

[16]  Douglas J. Klein Elemental Benzenoids , 1994, J. Chem. Inf. Comput. Sci..

[17]  Douglas J. Klein,et al.  Resonance in Elemental Benzenoids , 1996, Discret. Appl. Math..

[18]  P. Mezey,et al.  Cell‐shedding transformations, equivalence relations, and similarity measures for square‐cell configurations , 1997 .

[19]  Fuji Zhang,et al.  Perfect Matchings of Polyomino Graphs , 1997, Graphs Comb..

[20]  Heping Zhang,et al.  Plane elementary bipartite graphs , 2000, Discret. Appl. Math..

[21]  Fuji Zhang,et al.  k-Resonant Benzenoid Systems and k-Cycle Resonant Graphs , 2001, J. Chem. Inf. Comput. Sci..

[22]  Milan Randić,et al.  Aromaticity of Polycyclic Conjugated Hydrocarbons , 2003 .

[23]  Lusheng Wang,et al.  k-Resonance of Open-Ended Carbon Nanotubes , 2004 .

[24]  William Y. C. Chen,et al.  The Flagged Cauchy Determinant , 2005, Graphs Comb..

[25]  C. Si Perfect Matchings of Generalized Polyomino Graphs , 2005 .

[26]  Rong-si Chen Perfect Matchings of Generalized Polyomino Graphs , 2005, Graphs Comb..

[27]  P. Lam,et al.  k-resonance in Toroidal Polyhexes* , 2005 .

[28]  郭晓峰,et al.  k-Resonance in Benzenoid Systems, Open-ended Carbon Nanotubes, Toroidal Polyhexes; and k-Cycle Resonant Graphs , 2006 .

[29]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[30]  W. Shiu,et al.  A complete characterization for k-resonant Klein-bottle polyhexes , 2008 .

[31]  Heping Zhang,et al.  k-resonant toroidal polyhexes , 2008 .

[32]  Heping Zhang,et al.  On k-Resonant Fullerene Graphs , 2008, SIAM J. Discret. Math..

[33]  Heping Zhang,et al.  2-resonance of Plane Bipartite Graphs and Its Applications to Boron-nitrogen Fullerenes , 2010, Discret. Appl. Math..

[34]  Heping Zhang,et al.  Maximally resonant polygonal systems , 2010, Discret. Math..

[35]  Heping Zhang,et al.  Maximal resonance of cubic bipartite polyhedral graphs , 2010 .

[36]  Heping Zhang,et al.  2-extendability and k-resonance of non-bipartite Klein-bottle polyhexes , 2011, Discret. Appl. Math..