Comparison of statistical enhancement methods for Monte Carlo semiconductor simulation

Three methods of variable-weight statistical enhancement for Monte Carlo semiconductor device simulation are compared. The steady-state statistical errors and figures of merit for implementations of the multicomb, cloning-rouletting, and splitting-gathering enhancement methods are obtained for bulk silicon simulations. The results indicate that all methods enhance the high-energy distribution tail with comparable accuracy, but that the splitting-gathering method achieves a lower error at low energies by automatically preserving a peak in the bin populations at the peak of the particle energy distribution.

[1]  K. Hess,et al.  Impact ionization of electrons in silicon (steady state) , 1983 .

[2]  Bruno Riccò,et al.  A general purpose device simulator coupling Poisson and Monte Carlo transport with applications to deep submicron MOSFETs , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  A. Pacelli,et al.  Analysis of variance-reduction schemes for ensemble monte carlo simulation of semiconductor devices , 1997 .

[4]  Briesmeister MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2 , 1986 .

[5]  David J. Frank,et al.  Monte Carlo analysis of semiconductor devices: the DAMOCLES program , 1990 .

[6]  P. K. Sarkar,et al.  Prediction of statistical error and optimization of biased Monte Carlo transport calculations. [Integral equations] , 1979 .

[7]  M. Claassen,et al.  Tunneling and Ionization Phenomena in GaAs Pin Diodes , 1992, ESSDERC '92: 22nd European Solid State Device Research conference.

[8]  H. Goto,et al.  Phase space multiple refresh: A general purpose statistical enhancement technique for Monte Carlo device simulation , 1996, Journal of Technology Computer Aided Design TCAD.

[9]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[10]  C.H. Lee,et al.  Simulation of a long term memory device with a full bandstructure Monte Carlo approach , 1995, IEEE Electron Device Letters.

[11]  C. M. Snell,et al.  A multicomb variance reduction scheme for Monte Carlo semiconductor simulators , 1998 .

[12]  Bruno Riccò,et al.  MOS2: an efficient MOnte Carlo Simulator for MOS devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  C. Jacoboni,et al.  Weighted Monte Carlo approach to electron transport in semiconductors , 1992 .

[14]  Umberto Ravaioli,et al.  A Multiplication Scheme With Variable Weights For Ensemble Monte Carlo Simulation Of Hot-Electron Tails , 1996 .

[15]  Karl Hess,et al.  Calculation of hot electron distributions in silicon by means of an evolutionary algorithm , 1996 .

[16]  P. J. Price,et al.  Monte Carlo calculations on hot electron energy tails , 1977 .