Adaptable query evaluation using QBF

This work shows how to provide adaptable query evaluation using QBF, a query broker framework that provides a set of tools facilitating the design and implementation of query function in data-intensive distributed applications. The framework allows the use of multiple mechanisms to adaptively evaluate queries according to application requirements and its execution context. The smallest query evaluation unit built on the framework is called a query broker. Query brokers can be organized in hierarchies for evaluating distributed queries. This paper concentrates on the adaptability of query brokers so as to illustrate query processing strategies supported by QBF.

[1]  David J. DeWitt,et al.  Efficient mid-query re-optimization of sub-optimal query execution plans , 1998, SIGMOD '98.

[2]  Gio Wiederhold,et al.  Mediators in the architecture of future information systems , 1992, Computer.

[3]  Christine Collet,et al.  Open active services for data-intensive distributed applications , 2000, Proceedings 2000 International Database Engineering and Applications Symposium (Cat. No.PR00789).

[4]  Christine Collet,et al.  QBF: A Query Broker Framework for Adaptable Query Evaluation , 2004, FQAS.

[5]  Goetz Graefe The Cascades Framework for Query Optimization , 1995, IEEE Data Eng. Bull..

[6]  Joseph M. Hellerstein,et al.  Partial results for online query processing , 2002, SIGMOD '02.

[7]  Joseph M. Hellerstein,et al.  Eddies: continuously adaptive query processing , 2000, SIGMOD '00.

[8]  Arun N. Swami,et al.  Optimization of large join queries: combining heuristics and combinatorial techniques , 1989, SIGMOD '89.

[9]  Antonio Albano,et al.  Yet another query algebra for XML data , 2002, Proceedings International Database Engineering and Applications Symposium.

[10]  Goetz Graefe,et al.  The Volcano optimizer generator: extensibility and efficient search , 1993, Proceedings of IEEE 9th International Conference on Data Engineering.

[11]  Karen Ward,et al.  Dynamic query evaluation plans , 1989, SIGMOD '89.

[12]  David J. DeWitt,et al.  The EXODUS optimizer generator , 1987, SIGMOD '87.

[13]  하수철,et al.  [서평]「Component Software」 - Beyond Object-Oriented Programming - , 2000 .

[14]  Donald D. Chamberlin,et al.  Access Path Selection in a Relational Database Management System , 1989 .

[15]  Peter J. Haas,et al.  Ripple joins for online aggregation , 1999, SIGMOD '99.

[16]  Goetz Graefe,et al.  Volcano - An Extensible and Parallel Query Evaluation System , 1994, IEEE Trans. Knowl. Data Eng..

[17]  Luc Bouganim,et al.  Dynamic query scheduling in data integration systems , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[18]  Christine Collet,et al.  Query Brokers for Distributed and Flexible Query Evaluation , 2003, RIVF.

[19]  Yannis E. Ioannidis,et al.  Query optimization , 1996, CSUR.

[20]  Proceedings International Database Engineering and Applications Symposium , 2003, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings..

[21]  Goetz Graefe,et al.  Optimization of dynamic query evaluation plans , 1994, SIGMOD '94.

[22]  Klaus R. Dittrich,et al.  An overview and classification of mediated query systems , 1999, SGMD.

[23]  Alon Y. Halevy,et al.  An adaptive query execution system for data integration , 1999, SIGMOD '99.

[24]  Laurent Amsaleg,et al.  Cost-based query scrambling for initial delays , 1998, SIGMOD '98.