Venom Gland Peptides of Arthropods from the Brazilian Cerrado Biome Unveiled by Transcriptome Analysis

Animal venoms are rich sources of pharmacological active molecules. Less than 10% of arthropod venom components have been characterized so far, reinforcing the importance of prospective studies. The Cerrado, in the Midwest Region of Brazil, is the second-largest biome in Brazil presenting vast biodiversity of arthropod species with venom glands. In this scenario, in a project called “Inovatoxin”, active principles present in the venom of three biodiversity representative arthropod animals from this region were characterized structurally and functionally, using proteomic and transcriptomic prospective strategies. High Throughput Sequencing (HTS) is among the strategies to provide the raw material to help identify bioactive peptides present in these arthropods’ venom. This work proposes a workflow that allowed to annotate a total of 230 venom peptides from the Brazilian arthropods spider Acanthoscurria paulensis, social wasp Polybia sp., and scorpion Tityus fasciolatus. Along with these results, abundant data on the metabolism of the three species were also obtained. These results extend knowledge of venoms, contributing to new perspectives on rational therapeutic measures to treat accidents with these animals, and also on academic and biotechnological applications.

[1]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[2]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[3]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[4]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[5]  Greta J. Binford,et al.  ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures , 2010, Nucleic Acids Res..

[6]  Suzanna de Sousa Silva,et al.  Social wasps of two Cerrado localities in the northeast of Maranhão state, Brazil (Hymenoptera, Vespidae, Polistinae) , 2011 .

[7]  G. King,et al.  Australian funnel-web spiders: master insecticide chemists. , 2004, Toxicon : official journal of the International Society on Toxinology.

[8]  Ernesto Ortiz,et al.  Scorpion venom components as potential candidates for drug development , 2014, Toxicon.

[9]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[10]  Ernesto Ortiz,et al.  The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses , 2018, Toxicon : official journal of the International Society on Toxinology.

[11]  Kleber Del-Claro,et al.  New Records of Social Wasps (Hymenoptera, Vespidae) in the Brazilian Tropical Savanna , 2009 .

[12]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[13]  Rafaela Campostrini Forzza,et al.  Growing knowledge: an overview of Seed Plant diversity in Brazil , 2015 .

[14]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[15]  Ernesto Ortiz,et al.  Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi , 2018, Toxins.

[16]  Glenn F. King,et al.  Cellular and Molecular Life Sciences the Insecticidal Potential of Venom Peptides , 2022 .

[17]  E. Arantes,et al.  Scorpionism and dangerous species of Brazil , 2014 .

[18]  Caroline F. B. Mourão,et al.  Venomic and pharmacological activity of Acanthoscurria paulensis (Theraphosidae) spider venom. , 2013, Toxicon : official journal of the International Society on Toxinology.

[19]  R. Mains,et al.  Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme. , 2009, Structure.

[20]  Ioannis Xenarios,et al.  The UniProtKB/Swiss-Prot Tox-Prot program: A central hub of integrated venom protein data. , 2012, Toxicon : official journal of the International Society on Toxinology.

[21]  N. Lopes,et al.  Inhibition of acute nociceptive responses in rats after i.c.v. injection of Thr6‐bradykinin, isolated from the venom of the social wasp, Polybia occidentalis , 2007, British journal of pharmacology.

[22]  Baltazar Becerril,et al.  The Dual α-Amidation System in Scorpion Venom Glands , 2019, Toxins.

[23]  V. Quintero-Hernández,et al.  Scorpion Venom Gland Transcriptomics and Proteomics: An Overview , 2016 .

[24]  Everaldo de França,et al.  PATENTES DE FITOTERÁPICOS NO BRASIL: UMA ANÁLISE DO ANDAMENTO DOS PEDIDOS NO PERÍODO DE 1995-2017 , 2019 .

[25]  B. V. von Reumont,et al.  The Significance of Comparative Genomics in Modern Evolutionary Venomics , 2019, Front. Ecol. Evol..