Vortex filament method as a tool for computational visualization of quantum turbulence

The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear.

[1]  Generation of turbulence by oscillating structures in superfluid helium at very low temperatures , 2006, cond-mat/0610224.

[2]  Levine,et al.  Vortex reconnection in superfluid helium. , 1993, Physical review letters.

[3]  Y. Sergeev,et al.  Motion of tracer particles in He II , 2005 .

[4]  M. Fisher,et al.  Reconnection dynamics for quantized vortices , 2008, 0810.5521.

[5]  K. Bajer,et al.  Cascade of vortex loops initiated by a single reconnection of quantum vortices , 2010, 1009.0823.

[6]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[7]  Schwarz Three-dimensional vortex dynamics in superfluid 4He: Line-line and line-boundary interactions. , 1985, Physical review. B, Condensed matter.

[8]  Schwarz Three-dimensional vortex dynamics in superfluid 4He: Homogeneous superfluid turbulence. , 1988, Physical review. B, Condensed matter.

[9]  Y. Sergeev,et al.  Quasiclassical and ultraquantum decay of superfluid turbulence , 2011, 1111.3626.

[10]  B. Chabaud,et al.  Energy cascade and the four-fifths law in superfluid turbulence , 2012, 1202.0710.

[11]  Schuderer,et al.  Turbulent and Laminar Drag of Superfluid Helium on an Oscillating Microsphere. , 1995, Physical review letters.

[12]  W. Schoepe Fluctuations and stability of superfluid turbulence at mK temperatures. , 2004, Physical review letters.

[13]  Twisted vortex state. , 2006, Physical review letters.

[14]  D. Kivotides Relaxation of superfluid vortex bundles via energy transfer to the normal fluid , 2007 .

[15]  D. Kivotides,et al.  Dynamics of solid particles in a tangle of superfluid vortices at low temperatures , 2008 .

[16]  E. Bertschinger SIMULATIONS OF STRUCTURE FORMATION IN THE UNIVERSE , 1998 .

[17]  C. Barenghi,et al.  Spectrum of turbulent Kelvin-waves cascade in superfluid helium , 2010, 1006.2934.

[18]  R. Rogallo,et al.  Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions , 2003 .

[19]  A. Golov,et al.  Turbulent Dynamics in Rotating Helium Superfluids , 2008, 0803.3225.

[20]  W. Vinen Mutual friction in a heat current in liquid heliumn. II. IV. Critical heat currents in wide channels , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  M. Tsubota,et al.  Steady-state counterflow quantum turbulence: Simulation of vortex filaments using the full Biot-Savart law , 2009, 0912.4822.

[22]  R. Hänninen,et al.  Quantum turbulence in a propagating superfluid vortex front. , 2007, Physical review letters.

[23]  C. Barenghi,et al.  Depolarization of decaying counterflow turbulence in He II. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  B. Svistunov,et al.  Kolmogorov and Kelvin-wave cascades of superfluid turbulence at T=0: What lies between , 2007, cond-mat/0703047.

[25]  S. Laizet,et al.  Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles , 2013, 1310.5890.

[26]  D. Kivotides,et al.  Kelvin waves cascade in superfluid turbulence. , 2001, Physical review letters.

[27]  Davis Quantum turbulence. , 1990, Physical review letters.

[28]  Daniel P. Lathrop,et al.  SUPERFLUID HELIUM: Visualization of quantized vortices , 2006, Nature.

[29]  J. Tough Chapter 3: Superfluid Turbulence , 1982 .

[30]  Carlo F. Barenghi,et al.  Quantized vortex dynamics and superfluid turbulence , 2001 .

[31]  W. Vinen Mutual friction in a heat current in liquid helium II I. Experiments on steady heat currents , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  D. Kivotides,et al.  Numerical Calculation of the Interaction of Superfluid Vortices and a Rigid Sphere , 2006 .

[33]  H. E. Hall,et al.  Vortex Mutual Friction in Superfluid 3He , 1997 .

[34]  W. Vinen,et al.  Dissipation of quantum turbulence in the zero temperature limit. , 2007, Physical Review Letters.

[35]  Tao Zhang,et al.  Large-scale turbulent flow around a cylinder in counterflow superfluid4He (He (II)) , 2005 .

[36]  R. Hänninen Rotating Inclined Cylinder and the Effect of the Tilt Angle on Vortices , 2009, 0906.0850.

[37]  M. Tsubota,et al.  Numerical Study of Velocity Statistics in Steady Counterflow Quantum Turbulence , 2011, 1101.0926.

[38]  Y. Sergeev,et al.  Thermally and mechanically driven quantum turbulence in helium II , 2012, 1203.6182.

[39]  L. Skrbek,et al.  The Use of Vibrating Structures in the Study of Quantum Turbulence , 2009 .

[40]  R. Donnelly,et al.  The Observed Properties of Liquid Helium at the Saturated Vapor Pressure , 1998 .

[41]  A. Vincent,et al.  The dynamics of vorticity tubes in homogeneous turbulence , 1994, Journal of Fluid Mechanics.

[42]  E. Sonin Vortex oscillations and hydrodynamics of rotating superfluids , 1987 .

[43]  William Thomson 3. Vibrations of a Columnar Vortex , 1880 .

[44]  Identification of Kelvin Waves: Numerical Challenges , 2012, 1208.5403.

[45]  B. Svistunov,et al.  Kelvin-wave cascade and decay of superfluid turbulence. , 2003, Physical review letters.

[46]  A. M. Guénault,et al.  The Decay of Pure Quantum Turbulence in Superfluid 3He-B , 2007, 0706.0621.

[47]  Karla Morris,et al.  Vortex locking in direct numerical simulations of quantum turbulence. , 2008, Physical review letters.

[48]  C. Barenghi,et al.  Quantum turbulent velocity statistics and quasiclassical limit. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  W. Vinen Mutual friction in a heat current in liquid helium II. II. Experiments on transient effects , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  J. Maurer,et al.  LOCAL INVESTIGATION OF SUPERFLUID TURBULENCE , 1998 .

[51]  A. Baggaley The Sensitivity of the Vortex Filament Method to Different Reconnection Models , 2011, 1109.4409.

[52]  Russell J. Donnelly,et al.  Quantized Vortices in Helium II , 1991 .

[53]  A. Golov,et al.  Quantum and quasiclassical types of superfluid turbulence. , 2008, Physical review letters.

[54]  Energy Spectrum of the Random Velocity Field Induced by a Gaussian Vortex Tangle in HeII , 2001, cond-mat/0112068.

[55]  D. Wacks,et al.  Nonclassical velocity statistics in a turbulent atomic Bose-Einstein condensate. , 2009, Physical review letters.

[56]  Carlo F. Barenghi,et al.  Geometry and Topology of Superfluid Turbulence , 2003 .

[57]  S. Nazarenko,et al.  Spectrum of Kelvin-wave turbulence in superfluids , 2009, 0911.2065.

[58]  M. Tsubota,et al.  Turbulence in boundary flow of superfluid 4He triggered by free vortex rings. , 2007, Physical review letters.

[59]  P. Heikkinen,et al.  Vortex Formation and Annihilation in Rotating Superfluid 3He-B at Low Temperatures , 2010 .

[60]  P. Heikkinen,et al.  Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures , 2012, Nature Communications.

[61]  Computational model of vortex reconnection , 2003 .

[62]  S. Zuccher,et al.  Quantum vortex reconnections , 2012, 1206.2498.

[63]  H. E. Hall,et al.  The rotation of liquid helium II II. The theory of mutual friction in uniformly rotating helium II , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  Force on a Rigid Sphere in an Incompressible Inviscid Fluid , 1971 .

[65]  D. Kivotides,et al.  Triple vortex ring structure in superfluid helium II. , 2000, Science.

[66]  R. Hänninen,et al.  The Dynamics of Vortex Generation in Superfluid 3He-B , 2007, 0708.3003.

[67]  W. Ho,et al.  Pulsar glitches: the crust is not enough. , 2012, Physical review letters.

[68]  L. Skrbek,et al.  An intrinsic velocity-independent criterion for superfluid turbulence , 2003, Nature.

[69]  D. Kivotides Spreading of superfluid vorticity clouds in normal-fluid turbulence , 2010, Journal of Fluid Mechanics.

[70]  V. L’vov,et al.  Bottleneck crossover between classical and quantum superfluid turbulence , 2006, nlin/0612018.

[71]  M. Tsubota,et al.  Propagation of Quantized Vortices Driven by an Oscillating Sphere in Superfluid 4He , 2013 .

[72]  D. Kivotides Coherent structure formation in turbulent thermal superfluids. , 2006, Physical review letters.

[73]  V. Bagnato,et al.  Emergence of turbulence in an oscillating bose-einstein condensate. , 2009, Physical review letters.

[74]  S. Nemirovskii,et al.  Numerical Simulations of Superfluid Turbulence under Periodic Conditions , 2008 .

[75]  E. Sonin Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence , 2012, 1201.3188.

[76]  P. Heikkinen,et al.  Superfluid vortex front at T→0: decoupling from the reference frame. , 2011, Physical Review Letters.

[77]  C. Barenghi,et al.  Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations , 2012, Journal of Statistical Physics.

[78]  K. Duraisamy,et al.  Mechanics of viscous vortex reconnection , 2010 .

[79]  B. Svistunov,et al.  Scale-separation scheme for simulating superfluid turbulence: Kelvin-wave cascade. , 2004, Physical review letters.

[80]  C. Barenghi,et al.  Vortex-density fluctuations in quantum turbulence , 2011, 1103.6139.

[81]  S. W. Thomson,et al.  XXIV. Vibrations of a columnar vortex , 1880 .

[82]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[83]  Aarts,et al.  Numerical investigation of the flow properties of He II. , 1994, Physical review. B, Condensed matter.

[84]  P. Heikkinen,et al.  Stability and dissipation of laminar vortex flow in superfluid 3He-B. , 2010, Physical review letters.

[85]  M. Tsubota,et al.  Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature. , 2003, Physical Review Letters.

[86]  A. M. Guénault,et al.  The Onset of Vortex Production by a Vibrating Wire in Superfluid 3He-B , 2013 .

[87]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[88]  Svistunov Superfluid turbulence in the low-temperature limit. , 1995, Physical review. B, Condensed matter.

[89]  I. Grant Particle image velocimetry: A review , 1997 .

[90]  Alan C. Newell,et al.  Wave Turbulence , 2011 .

[91]  W. Vinen,et al.  Mutual friction in a heat current in liquid helium II III. Theory of the mutual friction , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[92]  Aarts,et al.  Route to vortex reconnection. , 1994, Physical review letters.

[93]  Shear flow and Kelvin-Helmholtz instability in superfluids. , 2001, Physical review letters.

[94]  Michael E Fisher,et al.  Velocity statistics distinguish quantum turbulence from classical turbulence. , 2008, Physical review letters.