Mixed-interpolated elements for Reissner–Mindlin plates

DCpartement de Mathtmatiyue, L'nit,ersitt 1.aral. Quthec, Canado SUMMARY We present in this paper a procedure to establish Reissner-Mindlin plate bending elements. The procedure is based on the idea to combine known resuits on the approximation of Stokes problems with known results on the approximation of elliptic problems. The proposed elements satisfy the mathematical conditions of stability and convergence, and some of them promise to provide efficient elements for practical solutions.

[1]  K. Bathe,et al.  On the convergence of a four - node plate bending element based on Mindlin - Reissner plate theory a , 1985 .

[2]  X. Ren,et al.  Mathematics , 1935, Nature.

[3]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[4]  K. Bathe,et al.  The MITC7 and MITC9 Plate bending elements , 1989 .

[5]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[6]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[7]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[8]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[9]  Michel Fortin,et al.  Numerical approximation of Mindlin-Reissner plates , 1986 .

[10]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[11]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[12]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[13]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[14]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[15]  K. Bathe,et al.  A Simplified Analysis of Two Plate Bending Elements — the MITC4 and MITC9 Elements , 1987 .

[16]  M. Fortin Old and new finite elements for incompressible flows , 1981 .

[17]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[18]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[19]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.