Harmonic skeleton for realistic character animation

Current approaches to skeleton generation are based on topological and geometrical information only; this can be insufficient for realistic character animation, since the location of the joints does not usually match the real bone structure of the model. This paper proposes the use of anatomical information to enhance the skeleton. Using a harmonic function, this information can be recovered from the skeleton itself, which is guaranteed not to have undesired endpoints. The skeleton is computed as a Reeb graph of such a function over the surface of the model. Starting from one point selected on the head of the character, the entire process is fast, automatic and robust; it generates skeletons whose joints can be associated with the character's anatomy. Results are provided, including a quantitative validation of the generated skeletons.

[1]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[2]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[3]  Wan-Chun Ma,et al.  Automatic Animation Skeleton Construction Using Repulsive Force Field , 2003 .

[4]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[5]  J. Tierny,et al.  3D Mesh Skeleton Extraction Using Topological and Geometrical Analyses , 2006 .

[6]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[7]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[8]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[9]  Anath Fischer,et al.  Topology recognition of 3D closed freeform objects based on topological graphs , 2001, SMA '01.

[10]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[11]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[12]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[13]  Richard E. Parent,et al.  Automated generation of control skeletons for use in animation , 2002, The Visual Computer.

[14]  Evangelos Kalogerakis,et al.  Folding meshes: hierarchical mesh segmentation based on planar symmetry , 2006, SGP '06.

[15]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[16]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[17]  Nancy M. Amato,et al.  Simultaneous shape decomposition and skeletonization , 2006, SPM '06.

[18]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[19]  Deborah Silver,et al.  Animating Volumetric Models , 2001, Graph. Model..

[20]  ALEX MACPHAIL Animal Painting and Anatomy , 1937, Nature.

[21]  Jules Bloomenthal,et al.  Skeletal methods of shape manipulation , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[22]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2003, SCG '03.

[23]  Marie-Paule Cani,et al.  Morphable model of quadrupeds skeletons for animating 3D animals , 2005, SCA '05.

[24]  Hubert de Fraysseix,et al.  An Heuristic for Graph Symmetry Detection , 1999, GD.