On self-similar Lie algebras and virtual endomorphisms
暂无分享,去创建一个
[1] V. Futorny,et al. Representations of Lie algebras of vector fields on affine varieties , 2017, Israel Journal of Mathematics.
[2] S. Sidki,et al. On self-similarity of wreath products of abelian groups , 2016, Groups, Geometry, and Dynamics.
[3] Y. Billig,et al. Classification of irreducible representations of Lie algebra of vector fields on a torus , 2016 .
[4] Yung Gao,et al. Representations of the affine-Virasoro algebra of type A(1) , 2015, 1512.07701.
[5] S. Sidki,et al. On state-closed representations of restricted wreath product of groups of type G_{p,d}=C_{p}wrC^{d} , 2015, 1505.05165.
[6] V. Futorny,et al. Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex , 2011, 1108.6092.
[7] L. Bartholdi. Self-similar Lie algebras , 2010, 1003.1125.
[8] Xiangqian Guo,et al. Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra , 2010 .
[9] I. Shestakov,et al. Examples of Self-Iterating Lie Algebras, 2 , 2009 .
[10] R. Moody. A category of modules for the full toroidal Lie algebra , 2009 .
[11] E. Zelmanov,et al. Some examples of nil Lie algebras , 2008 .
[12] B. Cox. Realizations of the four point affine Lie algebra sl(2, R) ⊕(ΩR⁄dR) , 2008 .
[13] Yu. P. Razmyslov,et al. Wreath products and Kaluzhnin-Krasner embedding for Lie algebras , 2006 .
[14] V. Petrogradsky. Examples of self-iterating Lie algebras , 2006 .
[15] Said Sidki,et al. Virtual endomorphisms of nilpotent groups , 2006, math/0602131.
[16] J. Groves,et al. Homological finiteness properties of Lie algebras , 2004 .
[17] H. You,et al. IRREDUCIBLE REPRESENTATIONS FOR THE AFFINE-VIRASORO LIE ALGEBRA OF TYPE Bl , 2004 .
[18] S. Sidki,et al. Groups: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms , 2004 .
[19] D. Kochloukova. On the homological finiteness properties of some modules over metabellian Lie algebras , 2002 .
[20] Volodymyr Nekrashevych,et al. Virtual endomorphisms of groups , 2002 .
[21] S. E. Rao. Classification of irreducible integrable modules for toroidal Lie algebras with finite dimensional weight spaces , 2001, math/0209060.
[22] O. Mathieu. Classification of irreducible weight modules , 2000 .
[23] S. Berman,et al. Irreducible Representations for Toroidal Lie Algebras , 1999 .
[24] R. Bryant,et al. Finitely presented Lie algebras , 1999 .
[25] R. Bryant,et al. Finite Presentation of Abelian‐by‐Finite‐Dimensional Lie Algebras , 1999 .
[26] A. Wasserman. A derivation HNN construction for lie algebras , 1998 .
[27] T. Siebert. Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0 , 1996 .
[28] M. Bremner. Four-point affine Lie algebras , 1995 .
[29] Xufeng Liu,et al. Bosonic Fock representations of the affine-Virasoro algebra , 1994 .
[30] M. Bremner. Generalized Affine Kac-Moody Lie Algebras Over Localizations of the Polynomial Ring in One Variable , 1994, Canadian Mathematical Bulletin.
[31] R. Moody,et al. Irreducible representations of Virasoro-toroidal Lie algebras , 1994 .
[32] O. Mathieu. Classification of Harish-Chandra modules over the Virasoro Lie algebra , 1992 .
[33] Gen Kuroki. Fock space representations of affine lie algebras and integral representations in the Wess-Zumino-Witten models , 1991 .
[34] T. Yokonuma,et al. Toroidal Lie algebras and vertex representations , 1990 .
[35] H. Strade,et al. Modular Lie Algebras and their Representations , 1988 .
[36] M. Frank. A NEW CLASS OF SIMPLE LIE ALGEBRAS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.