Identifying and searching for conserved RNA localisation signals.

RNA localisation is an important mode of delivering proteins to their site of function. Cis-acting signals within the RNAs, which can be thought of as zip-codes, determine the site of localisation. There are few examples of fully characterised RNA signals, but the signals are thought to be defined through a combination of primary, secondary, and tertiary structures. In this chapter, we describe a selection of computational methods for predicting RNA secondary structure, identifying localisation signals, and searching for similar localisation signals on a genome-wide scale. The chapter is aimed at the biologist rather than presenting the details of each of the individual methods.

[1]  Robert Giegerich,et al.  Local similarity in RNA secondary structures , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[2]  B. Schnapp,et al.  UUCAC- and Vera-Dependent Localization of VegT RNA in Xenopus Oocytes , 2002, Current Biology.

[3]  J. Gorodkin,et al.  Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments , 2008, Nucleic acids research.

[4]  Michael Zuker,et al.  UNAFold: software for nucleic acid folding and hybridization. , 2008, Methods in molecular biology.

[5]  Elena Rivas,et al.  Noncoding RNA gene detection using comparative sequence analysis , 2001, BMC Bioinformatics.

[6]  H. Krause,et al.  A stem-loop structure in the wingless transcript defines a consensus motif for apical RNA transport , 2007, Development.

[7]  A. Wilm,et al.  A benchmark of multiple sequence alignment programs upon structural RNAs , 2005, Nucleic acids research.

[8]  Eran Segal,et al.  Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes , 2008, Proceedings of the National Academy of Sciences.

[9]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[10]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[11]  H. Soifer,et al.  siRNA target site secondary structure predictions using local stable substructures , 2005, Nucleic acids research.

[12]  Kim Nasmyth,et al.  ASH1 mRNA localization in yeast involves multiple secondary structural elementsand Ash1 protein translation , 1999, Current Biology.

[13]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[14]  Andrey A. Mironov,et al.  Rnakinetics: a Web Server that Models Secondary Structure Kinetics of an Elongating RNA , 2006, J. Bioinform. Comput. Biol..

[15]  Peter F. Stadler,et al.  Prediction of locally stable RNA secondary structures for genome-wide surveys , 2004, Bioinform..

[16]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[17]  D. Ish-Horowicz,et al.  Apical localization of pair-rule transcripts requires 3′ sequences and limits protein diffusion in the Drosophila blastoderm embryo , 1991, Cell.

[18]  J. L. Smith,et al.  RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. , 1993, Development.

[19]  P. Gendron,et al.  Identification of a Conserved RNA Motif Essential for She2p Recognition and mRNA Localization to the Yeast Bud , 2005, Molecular and Cellular Biology.

[20]  S. Eddy,et al.  Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. , 2005, Genes & development.

[21]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[22]  P. Jin,et al.  New insights into fragile X syndrome: from molecules to neurobehaviors. , 2003, Trends in biochemical sciences.

[23]  M. Hiller,et al.  Using RNA secondary structures to guide sequence motif finding towards single-stranded regions , 2006, Nucleic acids research.

[24]  Sebastian Will,et al.  RNAalifold: improved consensus structure prediction for RNA alignments , 2008, BMC Bioinformatics.

[25]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[26]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[27]  M. Kiebler,et al.  RNA localisation in the nervous system. , 2007, Seminars in cell & developmental biology.

[28]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[29]  D. Turner,et al.  Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Serafim Batzoglou,et al.  CONTRAfold: RNA secondary structure prediction without physics-based models , 2006, ISMB.

[31]  J. Goodhouse,et al.  The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila , 2008, Journal of Cell Science.

[32]  Ilan Davis,et al.  RNA localization signals: deciphering the message with bioinformatics. , 2007, Seminars in cell & developmental biology.

[33]  Malgorzata Schelder,et al.  Identification of 40LoVe, a Xenopus hnRNP D family protein involved in localizing a TGF-beta-related mRNA during oogenesis. , 2005, Developmental cell.

[34]  Sean R. Eddy,et al.  Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction , 2004, BMC Bioinformatics.

[35]  Gabriele Varani,et al.  RNA is rarely at a loss for companions; as soon as RNA , 2008 .

[36]  Daniel St Johnston,et al.  Moving messages: the intracellular localization of mRNAs , 2005, Nature Reviews Molecular Cell Biology.

[37]  D. Blackwood,et al.  A common variant in the 3′UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder , 2008, Proceedings of the National Academy of Sciences.

[38]  B. Schnapp,et al.  Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. , 1997, Science.

[39]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[40]  R. Lehmann,et al.  A conserved 90 nucleotide element mediates translational repression of nanos RNA. , 1996, Development.

[41]  Ruth Nussinov,et al.  Prediction of interacting single-stranded RNA bases by protein-binding patterns. , 2008, Journal of molecular biology.

[42]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[43]  Jan Gorodkin,et al.  The foldalign web server for pairwise structural RNA alignment and mutual motif search , 2005, Nucleic Acids Res..

[44]  A. R. Srinivasan,et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. , 1992, Biophysical journal.

[45]  Sean R. Eddy,et al.  RSEARCH: Finding homologs of single structured RNA sequences , 2003, BMC Bioinformatics.

[46]  J. L. Smith,et al.  Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. , 1993, Development.

[47]  David H. Mathews,et al.  Predicting a set of minimal free energy RNA secondary structures common to two sequences , 2005, Bioinform..

[48]  G. Korza,et al.  Multiplexed RNA trafficking in oligodendrocytes and neurons. , 2008, Biochimica et biophysica acta.

[49]  Sean R Eddy,et al.  How do RNA folding algorithms work? , 2004, Nature Biotechnology.

[50]  Daniel Zicha,et al.  The Drosophila hairy RNA localization signal modulates the kinetics of cytoplasmic mRNA transport , 2003, The EMBO journal.

[51]  Bjarne Knudsen,et al.  Pfold: RNA Secondary Structure Prediction Using Stochastic Context-Free Grammars , 2003 .

[52]  S. Warren,et al.  Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function , 2008, Neuron.

[53]  Tobias Müller,et al.  The internal transcribed spacer 2 database—a web server for (not only) low level phylogenetic analyses , 2006, Nucleic Acids Res..

[54]  Sam Griffiths-Jones,et al.  RALEE--RNA ALignment Editor in Emacs , 2005, Bioinform..

[55]  D. St Johnston,et al.  A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP , 2006, The Journal of cell biology.

[56]  M. Frith,et al.  A Ubiquitous and Conserved Signal for RNA Localization in Chordates , 2002, Current Biology.

[57]  R. Cohen,et al.  A small predicted stem-loop structure mediates oocyte localization of Drosophila K10 mRNA. , 1995, Development.

[58]  Eric Westhof,et al.  Frequency and isostericity of RNA base pairs , 2009, Nucleic acids research.

[59]  D. Melton,et al.  Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. , 1992, Science.

[60]  H. Tiedge K-Turn Motifs in Spatial RNA Coding , 2006, RNA biology.

[61]  P. Tomançak,et al.  Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function , 2007, Cell.

[62]  C. Cote,et al.  Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. , 1997, Development.

[63]  M. Zuker Calculating nucleic acid secondary structure. , 2000, Current opinion in structural biology.

[64]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[65]  Ralf Bundschuh,et al.  Modeling the interplay of single-stranded binding proteins and nucleic acid secondary structure , 2010, Bioinform..

[66]  D. St Johnston,et al.  Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. , 2001, Annual review of cell and developmental biology.

[67]  G. Dreyfuss,et al.  The SMN complex, an assemblyosome of ribonucleoproteins. , 2002, Current opinion in cell biology.

[68]  Tobias Müller,et al.  A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. , 2005, RNA.

[69]  S. Jaffrey,et al.  Function and translational regulation of mRNA in developing axons. , 2007, Seminars in cell & developmental biology.

[70]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[71]  R. Durbin,et al.  RNA sequence analysis using covariance models. , 1994, Nucleic acids research.

[72]  Daniel Gautheret,et al.  The ERPIN server: an interface to profile-based RNA motif identification , 2004, Nucleic Acids Res..

[73]  M. Mutsuddi,et al.  The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila , 2004, Current Biology.

[74]  R. Cohen,et al.  The positional, structural, and sequence requirements of the Drosophila TLS RNA localization element. , 2005, RNA.

[75]  Frances M. G. Pearl,et al.  The CATH domain structure database. , 2005, Methods of biochemical analysis.

[76]  Graziano Pesole,et al.  UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs , 2004, Nucleic Acids Res..

[77]  I. Palacios How does an mRNA find its way? Intracellular localisation of transcripts. , 2007, Seminars in cell & developmental biology.

[78]  R. Singer,et al.  Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo , 1999, Current Biology.

[79]  D. Finnegan,et al.  A bioinformatics search pipeline, RNA2DSearch, identifies RNA localization elements in Drosophila retrotransposons. , 2009, RNA.

[80]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[81]  Hélène Touzet,et al.  CARNAC: folding families of related RNAs , 2004, Nucleic Acids Res..

[82]  F. Major,et al.  RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire. , 2002, Nucleic acids research.

[83]  H. Hoos,et al.  HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. , 2005, RNA.

[84]  D. Finnegan,et al.  gurken and the I factor retrotransposon RNAs share common localization signals and machinery. , 2005, Developmental cell.

[85]  C. Lawrence,et al.  A statistical sampling algorithm for RNA secondary structure prediction. , 2003, Nucleic acids research.

[86]  Harald Schwalbe,et al.  Structure and dynamics of an RNA tetraloop: a joint molecular dynamics and NMR study. , 2005, Structure.

[87]  Daniela Avossa,et al.  Transport and Localization Elements in Myelin Basic Protein mRNA , 1997, The Journal of cell biology.

[88]  Andrew D. Ellington,et al.  AANT: the Amino Aciduchleotide Interaction Database , 2004, Nucleic Acids Res..

[89]  Stephen R Holbrook,et al.  RNA structure: the long and the short of it , 2005, Current Opinion in Structural Biology.

[90]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[91]  Robert H Singer,et al.  Asymmetric sorting of ash1p in yeast results from inhibition of translation by localization elements in the mRNA. , 2002, Molecular cell.

[92]  G. Struhl,et al.  Cis- acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos , 1988, Nature.

[93]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[94]  Robert Giegerich,et al.  A comprehensive comparison of comparative RNA structure prediction approaches , 2004, BMC Bioinformatics.

[95]  Weixiong Zhang,et al.  An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots , 2004, Bioinform..

[96]  E. Westhof,et al.  The building blocks and motifs of RNA architecture. , 2006, Current opinion in structural biology.

[97]  F. Major,et al.  The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data , 2008, Nature.

[98]  S. Phillips,et al.  Structural basis of RNA binding discrimination between bacteriophages Qbeta and MS2. , 2006, Structure.

[99]  Zasha Weinberg,et al.  CMfinder - a covariance model based RNA motif finding algorithm , 2006, Bioinform..

[100]  D. Sankoff Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems , 1985 .

[101]  Sean R Eddy,et al.  What is a hidden Markov model? , 2004, Nature Biotechnology.

[102]  E. R. Gavis,et al.  Localization of bicoid mRNA in late oocytes is maintained by continual active transport. , 2006, Developmental cell.

[103]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.