LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes

Detailed knowledge of the wind resource is necessary in the developmental and operational stages of a wind farm site. As wind turbines continue to grow in size, masts for mounting cup anemometers—the accepted standard for resource assessment—have necessarily become much taller, and much more expensive. This limitation has driven the commercialization of two remote sensing (RS) tools for the wind energy industry: The LIDAR and the SODAR, Doppler effect instruments using light and sound, respectively. They are ground-based and can work over hundreds of meters, sufficient for the tallest turbines in, or planned for, production. This study compares wind measurements from two commercial RS instruments against an instrumented mast, in upland (semi-complex) terrain typical of where many wind farms are now being installed worldwide. With appropriate filtering, regression analyses suggest a good correlation between the RS instruments and mast instruments: The RS instruments generally recorded lower wind speeds than the cup anemometers, with the LIDAR more accurate and the SODAR more precise.

[1]  Torben Mikkelsen,et al.  Remote sensing the wind using lidars and sodars , 2007 .

[2]  H. Okamoto,et al.  Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea‐salt particles , 1999 .

[3]  R. L. Coulter,et al.  Analysis and simulation of phase coherent acdar sounding measurements , 1974 .

[4]  B. Lange,et al.  Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar , 2006 .

[5]  M. Schwartz,et al.  Comparison of Second Wind Triton Data with Meteorological Tower Measurements , 2010 .

[6]  Allan I. Carswell,et al.  Lidar measurements of the atmosphere , 1983 .

[7]  C. Flamant,et al.  Urban boundary-layer height determination from lidar measurements over the paris area. , 1999, Applied optics.

[8]  H. Jørgensen,et al.  Wind lidar evaluation at the Danish wind test site in Høvsøre , 2006 .

[9]  N. M. Nielsen,et al.  Offshore Wind Turbine Wakes Measured by Sodar , 2003 .

[10]  Cecilia Soriano,et al.  Remote Sensing Of Three-Dimensional Winds With Elastic Lidar: Explanation Of Maximum Cross-Correlation Method , 2002 .

[11]  Jean-Pierre Cariou,et al.  Theoretical and CFD Analysis of Pulsed Doppler Lidar Wind Profile Measurement Process in Complex Terrain , 2009 .

[12]  D. N. Asimakopoulos,et al.  A field study of the wake behind a 2 MW wind turbine , 1988 .

[13]  Ulla Wandinger,et al.  Introduction to Lidar , 2005 .

[14]  Troels Friis Pedersen,et al.  Development of a Classification System for Cup Anemometers - CLASSCUP , 2003 .

[15]  G. Crescenti,et al.  The degradation of doppler sodar performance due to noise: a review , 1998 .

[16]  Graeme L. Stephens,et al.  Remote Sensing of the Lower Atmosphere: An Introduction , 1994 .

[17]  Stuart Bradley,et al.  A scanning bi-static SODAR , 2008 .

[18]  M. Lange,et al.  Physical Approach to Short-Term Wind Power Prediction , 2005 .

[19]  Gilles A. Daigle,et al.  Atmospheric Acoustic Remote Sensing , 2008 .

[20]  Hans Ejsing Jørgensen,et al.  The Profiler Intercomparison Experiment (PIE) , 2004 .

[21]  James F. Manwell,et al.  MTC Final Progress Report : LIDAR , 2008 .

[22]  Stuart Bradley,et al.  Comparisons of New Technologies for Wind Profile Measurements Associated with Wind Energy Applications , 2007 .

[23]  S. Gryning,et al.  Offshore wind profiling using light detection and ranging measurements , 2009 .

[24]  Hans Ejsing Jørgensen,et al.  Remote sensing of the wind speed for wind energy purposes using a SODAR (poster) , 2001 .

[25]  Joseph P. Hornak,et al.  Encyclopedia of imaging science and technology , 2002 .

[26]  Stuart Bradley,et al.  SODAR calibration for wind energy applications , 2005 .

[27]  A. Albers,et al.  COMPARISON OF LIDARS , GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES , 2008 .

[28]  S. Vogt,et al.  SODAR — A useful remote sounder to measure wind and turbulence , 1995 .

[29]  Rebecca J. Barthelmie,et al.  Sodar Wind Velocity Measurements of Offshore Turbine Wakes , 2001 .

[30]  M. Kühn,et al.  Wake Measurements of a Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar , 2010 .

[31]  Andrew Oldroyd,et al.  An eight month test campaign of the Qinetiq ZephIR system: Preliminary results , 2007 .

[32]  K. Sassa,et al.  A Preliminary Investigation of Low-Cost SODAR Anemometry , 2003 .

[33]  Kurt S. Hansen,et al.  VALIDATION OF SODAR MEASUREMENTS FOR WIND POWER ASSESSMENT , 2006 .

[34]  J. Streicher,et al.  Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[35]  W. K. Graber SODAR monitoring of the atmosphere — recent developments , 1993 .

[36]  C. G. Little,et al.  Acoustic methods for the remote probing of the lower atmosphere , 1969 .

[37]  Rozenn Wagner,et al.  COMMERCIAL LIDAR PROFILERS FOR WIND ENERGY. A COMPARATIVE GUIDE , 2008 .

[38]  Jakob Mann,et al.  Lidar performance in complex terrain modelled by WAsP engineering , 2009 .

[39]  Hans Ejsing Jørgensen,et al.  Comparison of wind speed and power curve measurements using a cup anemometer, a LIDAR and a SODAR , 2004 .