Towards robotic MAGMaS: Multiple aerial-ground manipulator systems

In this paper we lay the foundation of the first heterogeneous multi-robot system of the Multiple Aerial-Ground Manipulator System (MAGMaS) type. A MAGMaS consists of a ground manipulator and a team of aerial robots equipped with a simple gripper manipulator the same object. The idea is to benefit from the advantages of both kinds of platforms, i.e., physical strength versus large workspace. The dynamic model of such robotic systems is derived, and its characteristic structure exhibited. Based on the dynamical structure of the system a nonlinear control scheme, augmented with a disturbance observer is proposed to perform trajectory tracking tasks in presence of model inaccuracies and external disturbances. The system redundancy is exploited by solving an optimal force/torque allocation problem that takes into account the heterogeneous system constraints and maximizes the force manipulability ellipsoid. Simulation results validated the proposed control scheme for this novel heterogeneous robotic system. We finally present a prototypical mechanical design and preliminary experimental evaluation of a MAGMaS composed by a kuka LWR4 and quadrotor based aerial robot.

[1]  Emanuele Garone,et al.  Control of a UAV and a UGV cooperating to manipulate an object , 2016, 2016 American Control Conference (ACC).

[2]  Didier Devaurs,et al.  Motion Planning for 6-D Manipulation with Aerial Towed-cable Systems , 2013, Robotics: Science and Systems.

[3]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.

[4]  Vijay Kumar,et al.  Construction of Cubic Structures with Quadrotor Teams , 2011, Robotics: Science and Systems.

[5]  Antonio Franchi,et al.  Cooperative aerial tele-manipulation with haptic feedback , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[6]  Dongjun Lee,et al.  Aerial tool operation system using quadrotors as Rotating Thrust Generators , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[7]  Vijay Kumar,et al.  Trajectory generation and control of a quadrotor with a cable-suspended load - A differentially-flat hybrid system , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Antonio Franchi,et al.  Shared Control : Balancing Autonomy and Human Assistance with a Group of Quadrotor UAVs , 2012, IEEE Robotics & Automation Magazine.

[9]  A. Ollero,et al.  Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).