Colloidal wettability probed with X-ray microscopy

Abstract Colloids (colloidal particles or nanoparticles) and their in-situ characterizations are important topics in colloid and interface science. In-situ visualization of colloids with X-ray microscopy is a growing frontier. Here, after a brief introduction on the method, we focus on its application for identifying nanoscale wettability of colloidal particles at fluid interfaces, which is a critical factor in colloidal self-assembly. We discuss a quantitative study on colloidal wettability with two microscopic methods: (i) X-ray microscopy by visualizing natural oil–water interfaces and (ii) confocal microscopy by visualizing fluorescently-labeled interfaces. Both methods show consistent estimation results in colloid–fluid interfacial tensions. This comparison strongly suggests a feasibility of X-ray microscopy as a promising in-situ protocol in colloid research, without fluorescent staining. Finally, we address a prospect of X-ray imaging for colloid and interface science.

[1]  T. Russell,et al.  Synthesis of nano/microstructures at fluid interfaces. , 2010, Angewandte Chemie.

[2]  K. Fezzaa,et al.  X-ray-induced water vaporization. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Thomas G. Dimiduk,et al.  Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms , 2012, 1202.1600.

[4]  R. Lewis,et al.  Medical phase contrast x-ray imaging: current status and future prospects. , 2004, Physics in medicine and biology.

[5]  H. Hertz,et al.  Laboratory X-ray microscopy for high-resolution imaging of environmental colloid structure , 2012 .

[6]  A. Momose Recent Advances in X-ray Phase Imaging , 2005 .

[7]  D. Frenkel,et al.  Phase behavior and crystallization kinetics of poly-12-hydroxystearic-coated polymethylmethacrylate colloids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  V. N. Paunov Novel Method for Determining the Three-Phase Contact Angle of Colloid Particles Adsorbed at Air−Water and Oil−Water Interfaces , 2003 .

[9]  Seung-Man Yang,et al.  Characterizing and tracking single colloidal particles with video holographic microscopy. , 2007, Optics express.

[10]  Bernard P. Binks,et al.  Phase inversion of particle-stabilized materials from foams to dry water , 2006, Nature materials.

[11]  J. Je,et al.  X-ray-induced changes in wettability. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  J. Je,et al.  Convection-enhanced water evaporation , 2011 .

[13]  James W. Goodwin,et al.  The preparation of poly(methyl methacrylate) latices in non-aqueous media , 1986 .

[14]  P. Norby In-situ XRD as a tool to understanding zeolite crystallization , 2006 .

[15]  J. Je,et al.  Ionization-induced surface tension reduction of water droplets , 2008 .

[16]  Frederick M. Fowkes,et al.  ADDITIVITY OF INTERMOLECULAR FORCES AT INTERFACES. I. DETERMINATION OF THE CONTRIBUTION TO SURFACE AND INTERFACIAL TENSIONS OF DISPERSION FORCES IN VARIOUS LIQUIDS1 , 1963 .

[17]  R Harder,et al.  High-resolution three-dimensional partially coherent diffraction imaging , 2012, Nature Communications.

[18]  G. Margaritondo,et al.  Coherence-enhanced synchrotron radiology: simple theory and practical applications , 2002 .

[19]  K. Hämäläinen,et al.  Direct tomography with chemical-bond contrast. , 2011, Nature materials.

[20]  D. Weitz,et al.  Short-time self-diffusion of nearly hard spheres at an oil–water interface , 2009, Journal of Fluid Mechanics.

[21]  J. Ralston,et al.  The uniform capillary model for packed beds and particle wettability. , 2009, Journal of colloid and interface science.

[22]  Eric R Weeks,et al.  The physics of the colloidal glass transition , 2011, Reports on progress in physics. Physical Society.

[23]  J. Je,et al.  Decreased surface tension of water by hard-x-ray irradiation. , 2008, Physical review letters.

[24]  Jung Ho Je,et al.  Coalescence preference depends on size inequality. , 2012, Physical review letters.

[25]  M. Hirota,et al.  Interfacial deformation between an impacting water drop and a silicone-oil surface. , 2003, Journal of colloid and interface science.

[26]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[27]  F. Ortega,et al.  Interfacial microrheology: Particle tracking and related techniques , 2010 .

[28]  Fook Chiong Cheong,et al.  Strategies for three-dimensional particle tracking with holographic video microscopy. , 2010, Optics express.

[29]  E. Weeks,et al.  On measuring colloidal volume fractions , 2011, 1106.2566.

[30]  Haim H Bau,et al.  In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  T. Tyliszczak,et al.  Three-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[32]  W. Röntgen,et al.  ON A NEW KIND OF RAYS. , 1896 .

[33]  N. Wagner,et al.  Effect of Gravity on Colloidal Deposition Studied by Atomic Force Microscopy. , 2001, Journal of colloid and interface science.

[34]  J. Budai,et al.  The Race to X-ray Microbeam and Nanobeam Science , 2011, Science.

[35]  J. Je,et al.  Colloid coalescence with focused x rays. , 2011, Physical review letters.

[36]  S. Stoyanov,et al.  Measuring the three-phase contact angle of nanoparticles at fluid interfaces. , 2010, Physical chemistry chemical physics : PCCP.

[37]  David G. Grier,et al.  VIDEO MICROSCOPY OF MONODISPERSE COLLOIDAL SYSTEMS , 1996 .

[38]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[39]  D. Weitz,et al.  Dynamics of drying in 3D porous media. , 2008, Physical review letters.

[40]  F. Fowkes ATTRACTIVE FORCES AT INTERFACES , 1964 .

[41]  S. Rehbein,et al.  Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM , 2011, Nature Photonics.

[42]  Yugang Sun Watching nanoparticle kinetics in liquid , 2012 .

[43]  Eric R Weeks,et al.  Quantitative imaging of colloidal flows. , 2008, Advances in colloid and interface science.

[44]  A. R. Bausch,et al.  Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles , 2002, Science.

[45]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[46]  R. Wepf,et al.  Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy , 2011, Nature communications.

[47]  Xiaojing Huang,et al.  Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. , 2009, Physical review letters.

[48]  Francisco Zaera,et al.  Probing liquid/solid interfaces at the molecular level. , 2012, Chemical reviews.

[49]  Wah-Keat Lee,et al.  Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm. , 2011, Optics express.

[50]  W. Ramsden,et al.  Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account , 1904, Proceedings of the Royal Society of London.

[51]  Marcel A. Lauterbach,et al.  Dynamic imaging of colloidal-crystal nanostructures at 200 frames per second. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[52]  Vinothan N. Manoharan,et al.  Colloidal self-assembly at an interface , 2010 .

[53]  A. Diaz,et al.  Three-dimensional high-resolution quantitative microscopy of extended crystals. , 2011, Nature communications.

[54]  David M. Kaz,et al.  Physical ageing of the contact line on colloidal particles at liquid interfaces. , 2012, Nature materials.

[55]  C. H. Chen,et al.  Electrochemistry: Building on bubbles in metal electrodeposition , 2002, Nature.

[56]  G. Krausch,et al.  Wetting at polymer surfaces and interfaces , 2003 .

[57]  F. Pfeiffer,et al.  Trimodal low-dose X-ray tomography , 2012, Proceedings of the National Academy of Sciences.

[58]  D. Weitz,et al.  Direct visualization of pH-dependent evolution of structure and dynamics in microgel suspensions , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  G. Margaritondo,et al.  A coherent synchrotron X-ray microradiology investigation of bubble and droplet coalescence , 2008, Journal of synchrotron radiation.

[60]  Richard J. Fitzgerald,et al.  Phase‐Sensitive X‐Ray Imaging , 2000 .

[61]  F. Fowkes,et al.  DETERMINATION OF INTERFACIAL TENSIONS, CONTACT ANGLES, AND DISPERSION FORCES IN SURFACES BY ASSUMING ADDITIVITY OF INTERMOLECULAR INTERACTIONS IN SURFACES , 1962 .

[62]  Video microscopy of colloidal suspensions and colloidal crystals , 2002, cond-mat/0204507.

[63]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[64]  Joel M. Harris,et al.  Confocal Raman microscopy of optical-trapped particles in liquids. , 2010, Annual review of analytical chemistry.

[65]  P. Pieranski,et al.  Two-Dimensional Interfacial Colloidal Crystals , 1980 .

[66]  U. Vogt,et al.  Laboratory soft-x-ray microscope for cryotomography of biological specimens. , 2011, Optics letters.

[67]  W. Kegel,et al.  Scenario for equilibrium solid-stabilized emulsions. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  J. Je,et al.  Capillary force repels coffee-ring effect. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Peter Fischer,et al.  Surface Chemistry of Solid and Liquid Interfaces , 2007 .

[70]  G. Margaritondo,et al.  X-ray ablation of hyaluronan hydrogels: Fabrication of three-dimensional microchannel networks , 2009 .

[71]  M. Oettel Entrapment of charged, nonwetting colloids near oil-water interfaces. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Kamel Fezzaa,et al.  Size limits the formation of liquid jets during bubble bursting , 2011, Nature communications.

[73]  R. van Roij,et al.  Charged colloidal particles and small mobile ions near the oil-water interface: destruction of colloidal double layer and ionic charge separation. , 2007, Physical review letters.

[74]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[75]  C. Rau,et al.  X-ray and neutron imaging with colloids ☆ , 2012 .

[76]  H. Butt,et al.  Impact of atomic force microscopy on interface and colloid science. , 2007, Advances in colloid and interface science.

[77]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[78]  W. Chao,et al.  Real space soft x-ray imaging at 10 nm spatial resolution. , 2012, Optics express.

[79]  A. Dinsmore,et al.  Particles on droplets: From fundamental physics to novel materials , 2006 .

[80]  S. Barcikowski,et al.  Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. , 2010, Journal of biomedical optics.

[81]  S. Egelhaaf,et al.  Confocal microscopy of colloidal particles: towards reliable, optimum coordinates. , 2007, Advances in colloid and interface science.

[82]  S. Wilkins,et al.  Phase-contrast imaging of weakly absorbing materials using hard X-rays , 1995, Nature.

[83]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[84]  G. Margaritondo,et al.  Stable Freestanding Thin Films of Pure Water , 2008 .

[85]  S. Eichmann,et al.  Optical microscopy measurements of kT-scale colloidal interactions , 2011 .

[86]  Anne Sakdinawat,et al.  Nanoscale X-ray Imaging , 2009 .

[87]  F. Ortega,et al.  Effect of the spreading solvent on the three-phase contact angle of microparticles attached at fluid interfaces. , 2010, Physical chemistry chemical physics : PCCP.

[88]  J. Hahn,et al.  Ablation and deposition of poly(dimethylsiloxane) with X-rays. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[89]  Eric R. Weeks,et al.  Confocal microscopy of colloids , 2007 .

[90]  B. Binks Colloidal particles at liquid interfaces. , 2008, Physical chemistry chemical physics : PCCP.

[91]  R. J. Benzing,et al.  ADVANCED LUBRICANTS AND LUBRICATION TECHNIQUES , 1964 .

[92]  C. Bahr,et al.  Atomic force microscopy of menisci of free-standing smectic films , 2011 .

[93]  G. Margaritondo,et al.  Phase contrast X-ray imaging , 2006 .

[94]  A Sheppard,et al.  Morphological clues to wet granular pile stability. , 2008, Nature materials.

[95]  Atsushi Momose,et al.  Phase–contrast X–ray computed tomography for observing biological soft tissues , 1996, Nature Medicine.

[96]  O. Bunk,et al.  Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources , 2006 .

[97]  Christian G. Schroer,et al.  Hard and Soft X‐Ray Microscopy and Tomography in Catalysis: Bridging the Different Time and Length Scales , 2011 .

[98]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[99]  A. Philipse,et al.  Atomic force microscopy and magnetic force microscopy study of model colloids. , 2002, Journal of colloid and interface science.