The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms

[1]  D. Soltis,et al.  Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome , 2021, Nature Plants.

[2]  Ting Li,et al.  WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes , 2021, bioRxiv.

[3]  R. Dixon,et al.  The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements , 2020, Genome biology.

[4]  B. Liu,et al.  The Phoebe genome sheds light on the evolution of magnoliids , 2020, Horticulture Research.

[5]  Shuangxia Jin,et al.  The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter , 2020, Genome Biology.

[6]  Diego F. Morales-Briones,et al.  Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l , 2020, Systematic biology.

[7]  Michael S. Barker,et al.  The Chimonanthus salicifolius genome provides insight into magnoliids evolution and flavonoids biosynthesis. , 2020, The Plant journal : for cell and molecular biology.

[8]  A. Lemmon,et al.  The Perfect Storm: Gene Tree Estimation Error, Incomplete Lineage Sorting, and Ancient Gene Flow Explain the Most Recalcitrant Ancient Angiosperm Clade, Malpighiales , 2020, bioRxiv.

[9]  Dinesh A Nagegowda,et al.  Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. , 2020, Plant science : an international journal of experimental plant biology.

[10]  W. Tong,et al.  The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants. , 2020, Molecular plant.

[11]  Y. van de Peer,et al.  The Litsea genome and the evolution of the laurel family , 2020, Nature Communications.

[12]  C. Davis,et al.  Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution , 2020, Nature Plants.

[13]  Charles S. P. Foster,et al.  Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling , 2020, Plant communications.

[14]  Yang Liu,et al.  The water lily genome and the early evolution of flowering plants , 2019, Nature.

[15]  Chao Zhang,et al.  ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy , 2019, bioRxiv.

[16]  E. M. Friis,et al.  The endothelium in seeds of early angiosperms. , 2019, The New phytologist.

[17]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[18]  Rui Fan,et al.  The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis , 2019, Nature Communications.

[19]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[20]  P. Zerbe,et al.  Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity , 2019, Front. Plant Sci..

[21]  D. Sankoff,et al.  The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation , 2019, Proceedings of the National Academy of Sciences.

[22]  Pamela S Soltis,et al.  Origin of angiosperms and the puzzle of the Jurassic gap , 2019, Nature Plants.

[23]  T. Demura,et al.  Creating vessel elements in vitro: Towards a comprehensive understanding of the molecular basis of xylem vessel element differentiation. , 2019, Plant biotechnology.

[24]  E. M. Friis,et al.  Hedyosmum-Like Fossils in the Early Cretaceous Diversification of Angiosperms , 2019, International Journal of Plant Sciences.

[25]  Yu-Wei Wu,et al.  Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution , 2019, Nature Plants.

[26]  Haibin Xu,et al.  Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation , 2018, Nature Plants.

[27]  G. Tuskan,et al.  Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants , 2018, Front. Plant Sci..

[28]  Wataru Iwasaki,et al.  SonicParanoid: fast, accurate and easy orthology inference , 2018, Bioinform..

[29]  J. Doyle,et al.  Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and their Evolutionary Implications , 2018, The Botanical Review.

[30]  Siavash Mirarab,et al.  TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees , 2018, BMC Genomics.

[31]  Chao Zhang,et al.  ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees , 2018, BMC Bioinformatics.

[32]  R. Dixon,et al.  Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses , 2018, Front. Plant Sci..

[33]  Wen-Bin Yu,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2018, Genome Biology.

[34]  Mark N. Puttick,et al.  The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte , 2018, Current Biology.

[35]  S. Kelly,et al.  STAG: Species Tree Inference from All Genes , 2018, bioRxiv.

[36]  Korbinian Schneeberger,et al.  findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies , 2018, Bioinform..

[37]  B. Rost,et al.  LocText: relation extraction of protein localizations to assist database curation , 2018, BMC Bioinformatics.

[38]  B. Trost,et al.  Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root , 2018, BMC Genomics.

[39]  Shujun Ou,et al.  LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.

[40]  Paul Bastide,et al.  PhyloNetworks: A Package for Phylogenetic Networks , 2017, Molecular biology and evolution.

[41]  Siavash Mirarab,et al.  DiscoVista: Interpretable visualizations of gene tree discordance. , 2017, Molecular phylogenetics and evolution.

[42]  R. Buggs The deepening of Darwin's abominable mystery , 2017, Nature Ecology &Evolution.

[43]  Axel Fischer,et al.  GeSeq – versatile and accurate annotation of organelle genomes , 2017, Nucleic Acids Res..

[44]  Joseph W. Brown,et al.  Phyx: phylogenetic tools for unix , 2017, Bioinform..

[45]  G. Martin,et al.  iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. , 2016, Molecular plant.

[46]  M. Christenhusz,et al.  The number of known plants species in the world and its annual increase , 2016 .

[47]  D. Soltis,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV , 2016 .

[48]  Jens Keilwagen,et al.  Using intron position conservation for homology-based gene prediction , 2016, Nucleic acids research.

[49]  R. Corlett Plant diversity in a changing world: Status, trends, and conservation needs , 2016, Plant diversity.

[50]  Frédéric Bouché,et al.  FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana , 2015, Nucleic Acids Res..

[51]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[52]  D. Dilcher,et al.  Montsechia, an ancient aquatic angiosperm , 2015, Proceedings of the National Academy of Sciences.

[53]  H. Endo,et al.  NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants , 2015, Front. Plant Sci..

[54]  Hongchuan Song,et al.  Secondary Metabolites of Plants from the Genus Chloranthus: Chemistry and Biological Activities , 2015, Chemistry & biodiversity.

[55]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[56]  B. M. Lange,et al.  Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase , 2015, Proceedings of the National Academy of Sciences.

[57]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[58]  Md. Shamsuzzoha Bayzid,et al.  Statistical binning enables an accurate coalescent-based estimation of the avian tree , 2014, Science.

[59]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[60]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[61]  Stephen A. Smith,et al.  Orthology Inference in Nonmodel Organisms Using Transcriptomes and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for Phylogenomics , 2014, Molecular biology and evolution.

[62]  A. Paterson,et al.  Polyploidy-associated genome modifications during land plant evolution , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  Amborella Genome The Amborella Genome and the Evolution of Flowering Plants , 2013, Science.

[64]  Andrew C. Adey,et al.  Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions , 2013, Nature Biotechnology.

[65]  S. Kikuchi,et al.  Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants , 2013, Front. Microbiol..

[66]  E. Vranová,et al.  Network analysis of the MVA and MEP pathways for isoprenoid synthesis. , 2013, Annual review of plant biology.

[67]  Joshua S. Yuan,et al.  Comparative genomic analysis of NAC transcriptional factors to dissect the regulatory mechanisms for cell wall biosynthesis , 2012, BMC Bioinformatics.

[68]  K. Berthelot,et al.  Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. , 2012, Biochimie.

[69]  J. Doyle Molecular and Fossil Evidence on the Origin of Angiosperms , 2012 .

[70]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[71]  K. Vandepoele,et al.  Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform1[W] , 2011, Plant Physiology.

[72]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[73]  Naomi S. Altman,et al.  Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower , 2010, Proceedings of the National Academy of Sciences.

[74]  Qian Gao,et al.  Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa , 2010, BMC Plant Biology.

[75]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[76]  G. Theißen,et al.  On the origin of MADS-domain transcription factors. , 2010, Trends in genetics : TIG.

[77]  Lili Yu,et al.  Phybase: an R package for species tree analysis , 2010, Bioinform..

[78]  Thomas L. Madden,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[79]  Mark W. Chase,et al.  A phylogenetic classification of the land plants to accompany APG III , 2009 .

[80]  Naomi S. Altman,et al.  Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae) , 2009, Proceedings of the National Academy of Sciences.

[81]  B. Gaut,et al.  Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. , 2009, Genome research.

[82]  T. Mailund,et al.  SNPFile – A software library and file format for large scale association mapping and population genetics studies , 2008, BMC Bioinformatics.

[83]  J. Martínez-Zapater,et al.  Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine1[W][OA] , 2008, Plant Physiology.

[84]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[85]  Pamela S Soltis,et al.  Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms , 2007, Proceedings of the National Academy of Sciences.

[86]  R. Jansen,et al.  Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). , 2007, Molecular phylogenetics and evolution.

[87]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[88]  M. Donoghue,et al.  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[89]  Ashutosh Kumar Singh,et al.  MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress , 2007, BMC Genomics.

[90]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[91]  K. Shinozaki,et al.  NAC Transcription Factors, NST1 and NST3, Are Key Regulators of the Formation of Secondary Walls in Woody Tissues of Arabidopsis[W][OA] , 2007, The Plant Cell Online.

[92]  Aili Li,et al.  Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. , 2006, Gene.

[93]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[94]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[95]  E. Koonin Orthologs, Paralogs, and Evolutionary Genomics 1 , 2005 .

[96]  K. Shinozaki,et al.  The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscencew⃞ , 2005, The Plant Cell Online.

[97]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[98]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[99]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[100]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[101]  S. Polasky,et al.  Agricultural sustainability and intensive production practices , 2002, Nature.

[102]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[103]  H. Kong,et al.  Floral organogenesis of Chloranthus sessilifolius, with special emphasis on the morphological nature of the androecium of Chloranthus (Chloranthaceae) , 2002, Plant Systematics and Evolution.

[104]  E. M. Friis,et al.  Early Evolution of Flowers , 2002, Plant Systematics and Evolution Supplement 8.

[105]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[106]  M. Yanofsky,et al.  Function and evolution of the plant MADS-box gene family , 2001, Nature Reviews Genetics.

[107]  H. Kong,et al.  Karyotypes of Sarcandra Gardn. and Chloranthus Swartz (Chloranthaceae) from China , 2000 .

[108]  Mark W. Chase,et al.  The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes , 1999, Nature.

[109]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[110]  W. R. Anderson,et al.  An Integrated System of Classification of Flowering Plants , 1982 .

[111]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[112]  Sébastien Tempel Using and understanding RepeatMasker. , 2012, Methods in molecular biology.

[113]  W. Friedman The meaning of Darwin's 'abominable mystery'. , 2009, American journal of botany.

[114]  A. Szkopińska,et al.  Farnesyl diphosphate synthase; regulation of product specificity. , 2005, Acta biochimica Polonica.

[115]  Jonathan Blumenthal Ma INAUGURAL ARTICLES: Rapid recent growth and divergence of rice nuclear genomes , 2004 .

[116]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[117]  S. Eddy Profile hidden Markov models , 1998, Bioinform..

[118]  R. Bouckaert,et al.  Bioinformatics Applications Note Phylogenetics Densitree: Making Sense of Sets of Phylogenetic Trees , 2022 .