The Symmetry Rule in Propositional Logic

Abstract The addition of the symmetry rule to the resolution system sometimes allows considerable shortening in the length of refutations. We prove exponential lower bounds on the size of resolution refutations using two forms of a global symmetry rule. The paper also discusses the relationship of symmetry rules to the extension rule that allows the use of abbreviative definitions in proofs.

[1]  Zvi Galil,et al.  On the Complexity of Regular Resolution and the Davis-Putnam Procedure , 1977, Theor. Comput. Sci..

[2]  Alasdair Urquhart,et al.  The Complexity of Propositional Proofs , 1995, Bulletin of Symbolic Logic.

[3]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[4]  Bela Bollobas,et al.  Graph theory , 1979 .

[5]  Zvi Galil,et al.  Explicit constructions of linear size superconcentrators , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[6]  Graham Wrightson,et al.  Automation of Reasoning , 1983 .

[7]  Vasek Chvátal,et al.  The tail of the hypergeometric distribution , 1979, Discret. Math..

[8]  E. Wright Graphs on unlabelled nodes with a given number of edges , 1971 .

[9]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[10]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[11]  Jan Krajícek,et al.  Propositional proof systems, the consistency of first order theories and the complexity of computations , 1989, Journal of Symbolic Logic.

[12]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[13]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[14]  Samuel R. Buss,et al.  Resolution Proofs of Generalized Pigeonhole Principles , 1988, Theor. Comput. Sci..

[15]  Béla Bollobás,et al.  Random Graphs , 1985 .

[16]  Michael A. Harrison,et al.  Introduction to switching and automata theory , 1965 .

[17]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[18]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.